aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/ConvolutionLayerFixture.h
blob: 0622e5e6f0f2a64b01168dc0def7f2f35b961a39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/*
 * Copyright (c) 2017-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef ACL_TESTS_VALIDATION_FIXTURES_CONVOLUTIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_CONVOLUTIONLAYERFIXTURE_H

#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/graph/Utils.h"
#ifdef ARM_COMPUTE_OPENCL_ENABLED
#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"
#endif // ARM_COMPUTE_OPENCL_ENABLED
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/core/NEON/kernels/arm_gemm/utils.hpp"
#include "src/graph/mutators/MutatorUtils.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/PadLayer.h"
#include "tests/validation/reference/Permute.h"
#include "tests/validation/reference/Utils.h"

#include <random>
#include <type_traits>

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace detail
{
template <typename ConvolutionFunction, typename TensorType>
#ifdef ARM_COMPUTE_OPENCL_ENABLED
std::enable_if_t<!std::is_same<ConvolutionFunction, CLGEMMConvolutionLayer>::value, void>
#else // ARM_COMPUTE_OPENCL_ENABLED
void
#endif // ARM_COMPUTE_OPENCL_ENABLED
configure_conv_function(ConvolutionFunction &func,
                             TensorType *src, const TensorType *weights, const TensorType *bias, TensorType *dst,
                             const PadStrideInfo &info, const WeightsInfo &weights_info,
                             const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
    func.configure(src, weights, bias, dst, info, weights_info, dilation, act_info, false /* enable_fast_math */, num_groups);
}

#ifdef ARM_COMPUTE_OPENCL_ENABLED
template <typename ConvolutionFunction, typename TensorType>
std::enable_if_t<std::is_same<ConvolutionFunction, CLGEMMConvolutionLayer>::value, void>
configure_conv_function(ConvolutionFunction &func,
                             TensorType *src, const TensorType *weights, const TensorType *bias, TensorType *dst,
                             const PadStrideInfo &info, const WeightsInfo &weights_info,
                             const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
    func.configure(src, weights, bias, dst, info, weights_info, dilation, act_info, num_groups);
}
#endif // ARM_COMPUTE_OPENCL_ENABLED
} // namespace detail

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationGenericFixture : public framework::Fixture
{
public:
    using TBias = typename std::conditional < std::is_same<typename std::decay<T>::type, uint8_t>::value
                  || std::is_same<typename std::decay<T>::type, int8_t>::value,
                  int32_t, T >::type;

    void setup_quantization(TensorShape input_shape, TensorShape weights_shape, QuantizationInfo &input_q_info,
        QuantizationInfo &weights_q_info, DataType data_type)
    {
        const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
        const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());

        std::mt19937                           generator(library->seed() + _hash);
        std::uniform_real_distribution<float>  distribution_float(-5.0f, 3.0f);
        std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);

        const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
        const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]

        const int32_t offset_lhs = distribution_t(generator);
        const int32_t offset_rhs = distribution_t(generator);

        _quantization_info = QuantizationInfo(scale_lhs, offset_lhs);
        _weight_quantization_info = QuantizationInfo(scale_rhs, offset_rhs);

        QuantizationHint q_hint = suggest_conv_dst_q_info_and_bias(input_q_info, weights_q_info,
            weights_shape.y() /* heights */, weights_shape.x() /* width */, input_shape.z() /* channels */,
            data_type, 0.5f /* bias_fraction */);

        _dst_q_info = q_hint.q_info;
        _min_bias = q_hint.bias_min;
        _max_bias = q_hint.bias_max;
    }

public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights,
               DataType data_type, DataType weights_data_type, DataLayout data_layout, QuantizationInfo quantization_info, QuantizationInfo weight_quantization_info, ActivationLayerInfo act_info,
               bool mixed_layout = false, PaddingList pre_pad_layer = PaddingList({}), bool padded_weights = false)
    {
        // This hash is used by random generators. There may be hash collisions but
        // this is intentional as it's a very easy way to make the the current
        // random generation process almost different for many test configurations,
        // which were using the same set of values before.
        _hash = input_shape[0] + input_shape[1] + input_shape[2] + input_shape[3] +
            + weights_shape[0] + weights_shape[1] + weights_shape[2] + weights_shape[3] +
            mixed_layout + (data_type == DataType::QASYMM8_SIGNED) + (data_layout == DataLayout::NHWC);

        _mixed_layout             = mixed_layout;
        _data_type                = data_type;
        _weights_data_type        = weights_data_type;
        const bool is_quantized   = is_data_type_quantized(weights_data_type);
        _is_bfloat16              = data_type == DataType::BFLOAT16;
        _bias_data_type           = is_quantized ? DataType::S32 : (_is_bfloat16 ? DataType::F32 : data_type);
        _output_data_type         = _is_bfloat16 ? DataType::F32 : data_type;
        _quantization_info        = quantization_info;
        _weight_quantization_info = weight_quantization_info;
        _data_layout              = data_layout;
        _dst_q_info               = quantization_info;

        if(is_quantized && !is_data_type_quantized_symmetric(weights_data_type) && (!act_info.enabled() || act_info.activation() == ActivationFunction::IDENTITY))
        {
            setup_quantization(input_shape, weights_shape, _quantization_info, _weight_quantization_info, data_type);
            _use_dynamic_output_quant = true;
        }

        _target    = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, reshape_weights, dilation, act_info, pre_pad_layer, padded_weights);
        _reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation, act_info, pre_pad_layer);
    }

protected:
    void mix_layout(FunctionType &layer, TensorType &src, TensorType &dst)
    {
        // Test Multi DataLayout graph cases, when the data layout changes after configure
        src.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);
        dst.info()->set_data_layout(_data_layout == DataLayout::NCHW ? DataLayout::NHWC : DataLayout::NCHW);

        // Compute Convolution function
        layer.run();

        // Reinstating original data layout for the test suite to properly check the values
        src.info()->set_data_layout(_data_layout);
        dst.info()->set_data_layout(_data_layout);
    }

    void regularize_values(void *values, size_t size)
    {
        float *fvalues = static_cast<float *>(values);
        for(size_t i = 0; i < size; ++i)
        {
            fvalues[i] = float(bfloat16(fvalues[i]));
        }
    }

    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::QASYMM8:
            {
                if(_use_dynamic_output_quant)
                {
                    std::uniform_int_distribution<int32_t> distribution(0, 255);
                    library->fill(tensor, distribution, i);
                }
                else
                {
                    // Legacy initialization in case the output quantization info can't be reliably estimated
                    std::pair<int, int>                     bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                    std::uniform_int_distribution<uint32_t> distribution(bounds.first, bounds.second);
                    library->fill(tensor, distribution, i);
                }
                break;
            }
            case DataType::QASYMM8_SIGNED:
            {
                if(_use_dynamic_output_quant)
                {
                    std::uniform_int_distribution<int32_t> distribution(-128, 127);
                    library->fill(tensor, distribution, i);
                }
                else
                {
                    // Legacy initialization in case the output quantization info can't be reliably estimated
                    std::pair<int, int>                    bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
                    std::uniform_int_distribution<int32_t> distribution(bounds.first, bounds.second);
                    library->fill(tensor, distribution, i);
                }
                break;
            }
            case DataType::QSYMM8_PER_CHANNEL:
            {
                int min_bound = 128;
                int max_bound = -127;
                for(size_t i = 0; i < _weight_quantization_info.scale().size(); i++)
                {
                    std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
                    if(bounds.first < min_bound)
                    {
                        min_bound = bounds.first;
                    }
                    if(bounds.second > max_bound)
                    {
                        max_bound = bounds.second;
                    }
                }
                std::uniform_int_distribution<int32_t> distribution(min_bound, max_bound);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::S32:
            {
                std::uniform_int_distribution<int32_t> distribution(_min_bias, _max_bias);
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::BFLOAT16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

    // given input is IN nchw format
    TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &info,
                              bool reshape_weights, const Size2D &dilation, const ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}), bool padded_weights = false)
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        if(_data_layout == DataLayout::NHWC)
        {
            permute(input_shape, PermutationVector(2U, 0U, 1U));
            permute(weights_shape, PermutationVector(2U, 0U, 1U));
            permute(output_shape, PermutationVector(2U, 0U, 1U));

            if(pre_pad_layer.size() > 0)
            {
                // make sure paddings exist for each c,h,w dimensions
                for(unsigned int i = 0; i < 3 - pre_pad_layer.size(); ++i)
                {
                    pre_pad_layer.push_back({ 0, 0 });
                }

                // rotate padding info from nchw to nhwc
                std::rotate(pre_pad_layer.begin(), pre_pad_layer.begin() + 2, pre_pad_layer.begin() + 3);
            }
        }

        const int idx_width  = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
        const int idx_height = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);

        WeightsInfo weights_info(!reshape_weights, weights_shape[idx_width], weights_shape[idx_height], weights_shape[3]);
        TensorShape reshaped_weights_shape(weights_shape);

        // Create tensors
        TensorType src     = create_tensor<TensorType>(input_shape, _data_type, 1, _quantization_info, _data_layout);
        TensorType weights = create_tensor<TensorType>(reshaped_weights_shape, _weights_data_type, 1, _weight_quantization_info, _data_layout);
        TensorType bias    = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, QuantizationInfo() /*bias is not a quantized type*/, _data_layout);
        TensorType dst     = create_tensor<TensorType>(output_shape, _output_data_type, 1, _dst_q_info, _data_layout);

        // Create and configure function
        FunctionType conv;

        const unsigned int height_index = arm_compute::graph::get_dimension_idx(_data_layout, DataLayoutDimension::HEIGHT);
        const unsigned int width_index  = arm_compute::graph::get_dimension_idx(_data_layout, DataLayoutDimension::WIDTH);

        const PaddingInfo pad_w = width_index < pre_pad_layer.size() ? pre_pad_layer[width_index] : PaddingInfo(0, 0);
        const PaddingInfo pad_h = height_index < pre_pad_layer.size() ? pre_pad_layer[height_index] : PaddingInfo(0, 0);

        if(pre_pad_layer.size() > 0 && arm_compute::graph::is_padding_in_height_or_width(_data_layout, pre_pad_layer))
        {
            // this is the logic implemented in NodeFusionMutator -> fuse_pad_with_convolution
            const PadStrideInfo new_conv_info(
                info.stride().first,
                info.stride().second,
                info.pad_left() + pad_w.first,
                info.pad_right() + pad_w.second,
                info.pad_top() + pad_h.first,
                info.pad_bottom() + pad_h.second,
                info.round());
            detail::configure_conv_function(conv, &src, &weights, &bias, &dst, new_conv_info, weights_info, dilation, act_info, num_groups);
        }
        else
        {
            detail::configure_conv_function(conv, &src, &weights, &bias, &dst, info, weights_info, dilation, act_info, num_groups);
        }

        ARM_COMPUTE_ASSERT(src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
        // Test "add padding after configure" behavior. This behavior should not affect the correctness
        add_padding_x({ &src, &bias, &dst }, _data_layout);
        // Padding weights may affect code path in some backends
        if (padded_weights)
        {
            add_padding_x({ &weights }, _data_layout);
        }

        // Allocate tensors
        src.allocator()->allocate();
        weights.allocator()->allocate();
        bias.allocator()->allocate();
        dst.allocator()->allocate();

        ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
        ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());

        // Fill tensors
        fill(AccessorType(src), 0 + _hash);
        fill(AccessorType(weights), 1 + _hash);
        fill(AccessorType(bias), 2 + _hash);

        if(_mixed_layout)
        {
            mix_layout(conv, src, dst);
        }
        else
        {
            // Compute Convolution function
            conv.run();
        }

        return dst;
    }

    SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                                      const Size2D &dilation, const ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}))
    {
        ARM_COMPUTE_ERROR_ON((input_shape[2] % weights_shape[2]) != 0);

        const unsigned int num_groups = input_shape[2] / weights_shape[2];

        // Setup reference data types
        const DataType src_dt     = _is_bfloat16 ? DataType::F32 : _data_type;
        const DataType weights_dt = _is_bfloat16 ? DataType::F32 : _weights_data_type;
        const DataType bias_dt    = _is_bfloat16 ? DataType::F32 : _bias_data_type;

        // Create reference
        SimpleTensor<T>     src{ input_shape, src_dt, 1, _quantization_info };
        SimpleTensor<TW>    weights{ weights_shape, weights_dt, 1, _weight_quantization_info };
        SimpleTensor<TBias> bias{ bias_shape, bias_dt, 1, _quantization_info };

        fill(src, 0 + _hash);
        fill(weights, 1 + _hash);
        fill(bias, 2 + _hash);

        // Fill with bfloat16 to perform the conversion and reduce the mismatches in the output
        if(_is_bfloat16)
        {
            regularize_values(static_cast<void *>(src.data()), src.num_elements());
            regularize_values(static_cast<void *>(weights.data()), weights.num_elements());
        }

        if(pre_pad_layer.size() > 0)
        {
            src = reference::pad_layer<T>(src, pre_pad_layer, PixelValue(0), PaddingMode::CONSTANT);
        }

        return (act_info.enabled()) ? reference::activation_layer<T>(reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups, _dst_q_info),
                                                                     act_info) :
               reference::convolution_layer<T>(src, weights, bias, output_shape, info, dilation, num_groups, _dst_q_info);
    }

    TensorType       _target{};
    SimpleTensor<T>  _reference{};
    DataType         _data_type{};
    DataType         _weights_data_type{};
    DataType         _bias_data_type{};
    DataType         _output_data_type{};
    DataLayout       _data_layout{};
    QuantizationInfo _quantization_info{};
    QuantizationInfo _weight_quantization_info{};
    QuantizationInfo _dst_q_info{};
    bool             _is_bfloat16  = false;
    bool             _mixed_layout = false;
    bool             _use_dynamic_output_quant{false};
    int32_t          _hash{0};
    int32_t          _min_bias{-100};
    int32_t          _max_bias{100};
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), act_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationPaddedWeightsFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), ActivationLayerInfo(), mixed_layout, PaddingList({}), true);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationWithPaddingFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, ActivationLayerInfo act_info, PaddingList pre_pad_layer = PaddingList({}))
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout,
                                                                                                 QuantizationInfo(), QuantizationInfo(), act_info, mixed_layout, pre_pad_layer);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, bool mixed_layout = false>
class ConvolutionValidationQuantizedFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info)
    {
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation, reshape_weights,
                                                                                                 data_type, data_type, data_layout, quantization_info, quantization_info, act_info, mixed_layout);
    }
};

template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class ConvolutionValidationQuantizedPerChannelFixture : public ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, bool reshape_weights, DataType data_type,
               DataLayout data_layout, QuantizationInfo quantization_info, ActivationLayerInfo act_info, DataType weights_data_type)
    {
        std::vector<float>                    weights_scales{};
        std::mt19937                          gen(library->seed());
        std::uniform_real_distribution<float> dis(0.01f, 1.f);
        for(size_t i = 0; i < output_shape[2]; ++i)
        {
            weights_scales.push_back(dis(gen));
        }
        ConvolutionValidationGenericFixture<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, dilation,
                                                                                                  reshape_weights, data_type, weights_data_type, data_layout,
                                                                                                  quantization_info, QuantizationInfo(weights_scales), act_info);
    }
};


#ifdef ARM_COMPUTE_ENABLE_FIXED_FORMAT_KERNELS
inline TensorInfo prepare_weights(const TensorInfo tensor_info, const arm_compute::WeightFormat weight_format)
{
    const DataLayout data_layout = tensor_info.data_layout();
    ARM_COMPUTE_EXPECT(data_layout == DataLayout::NHWC, framework::LogLevel::ERRORS);
    const DataType    data_type    = tensor_info.data_type();
    const TensorShape tensor_shape = tensor_info.tensor_shape();
    const int         N            = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O
    const int         H            = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
    const int         W            = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
    const int         C            = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I

    const int interleave_by = arm_compute::interleave_by(weight_format);
    const int block_by      = arm_compute::block_by(weight_format);
    const int Ip            = arm_gemm::roundup<unsigned int>(C, block_by);      // C'=I'
    const int Op            = arm_gemm::roundup<unsigned int>(N, interleave_by); // O'=N'

    arm_compute::Strides strides_in_bytes = tensor_info.strides_in_bytes();
    strides_in_bytes.set(1, Ip * interleave_by * H * W * tensor_info.element_size());
    strides_in_bytes.set(2, Ip * Op * tensor_info.element_size());

    const size_t offset_first_element_in_bytes = tensor_info.offset_first_element_in_bytes();

    // Total size needs to include padded dimensions
    const size_t total_size_in_bytes = Op * H * W * Ip * tensor_info.element_size();

    const TensorShape TS(Ip, W, H, Op);

    TensorInfo new_tensor_info = tensor_info;
    new_tensor_info.init(TS, 1 /*num_channels, deprecated*/, data_type, strides_in_bytes,
        offset_first_element_in_bytes, total_size_in_bytes);
    return new_tensor_info;
}

template <typename ScalarType, typename AccessorType>
inline void rearrange_data(const AccessorType src, AccessorType dst, const arm_compute::WeightFormat weight_format)
{
    ARM_COMPUTE_EXPECT(arm_compute::is_fixed_format(weight_format), framework::LogLevel::ERRORS);
    // Data Layout: OHWIo<interleave_by>i<block_by>
    const int         interleave_by    = arm_compute::interleave_by(weight_format);
    const int         block_by         = arm_compute::block_by(weight_format);
    const TensorShape src_tensor_shape = src.shape();
    const DataLayout  data_layout      = src.data_layout();
    ARM_COMPUTE_EXPECT(data_layout == DataLayout::NHWC, framework::LogLevel::ERRORS);
    const unsigned int O  = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O
    const unsigned int H  = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
    const unsigned int W  = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
    const unsigned int I  = src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I
    const unsigned int Ip = arm_gemm::roundup<unsigned int>(I, block_by);                                                 // C'=I'
    const unsigned int Op = arm_gemm::roundup<unsigned int>(O, interleave_by);                                            // N'=O'

    ARM_COMPUTE_EXPECT_EQUAL(Op * H * W * Ip, (unsigned)dst.num_elements(), framework::LogLevel::ERRORS);
    ARM_COMPUTE_EXPECT(src.num_elements() <= dst.num_elements(), framework::LogLevel::ERRORS);

    const ScalarType *src_ptr = reinterpret_cast<const ScalarType *>(src.data());
    ScalarType       *dst_ptr = reinterpret_cast<ScalarType *>(dst.data());
    for(unsigned i = 0; i < I; ++i)
        for(unsigned w = 0; w < W; ++w)
            for(unsigned h = 0; h < H; ++h)
                for(unsigned o = 0; o < O; ++o)
                {
                    ScalarType src_element;
                    switch(data_layout)
                    {
                        case DataLayout::NHWC:
                        {
                            src_element = src_ptr[o * H * W * I + h * W * I + w * I + i];
                        }
                        break;
                        default:
                        {
                            ARM_COMPUTE_ERROR("Unsupported memory layout.");
                        }
                    }
                    const int x5      = std::floor(((float)o) / interleave_by);
                    const int x4      = h;
                    const int x3      = w;
                    const int x2      = std::floor((float)i / block_by);
                    const int x1      = o % interleave_by;
                    const int x0      = i % block_by;
                    unsigned  dst_idx = x5 * H * W * Ip * interleave_by
                                        + x4 * W * Ip * interleave_by
                                        + x3 * Ip * interleave_by
                                        + x2 * interleave_by * block_by
                                        + x1 * block_by
                                        + x0;
                    dst_ptr[dst_idx] = src_element;
                }
}

template <typename ConvolutionFunction, typename TensorClass, typename AccessorType, typename ScalarType, bool enable_fast_math>
class VariableWeightsFixtureBaseClass : public framework::Fixture
{
public:
    void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info, Size2D dilation, DataLayout data_layout,
               const DataType data_type)
    {
        conv = std::make_unique<ConvolutionFunction>();
        // prepare data
        _data_layout = data_layout;
        // Fixed format kernels for variable weights can work only with NHWC format.
        ARM_COMPUTE_EXPECT_EQUAL(_data_layout, DataLayout::NHWC, framework::LogLevel::ERRORS);
        _data_type = data_type;
        // run the code
        compute_target(input_shape, weights_shape, bias_shape, output_shape, info, dilation);
        compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, dilation);
    }
    void teardown()
    {
        _target.allocator()->free();
    }

protected:
    template <typename U>
    void fill(U &&tensor, int i)
    {
        switch(tensor.data_type())
        {
            case DataType::F16:
            {
                arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
                library->fill(tensor, distribution, i);
                break;
            }
            case DataType::F32:
            {
                std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
                library->fill(tensor, distribution, i);
                break;
            }
            default:
                library->fill_tensor_uniform(tensor, i);
        }
    }

private:
    virtual void configure_and_execute_kernel(TensorInfo src_tensor_info, TensorInfo weight_tensor_info, TensorInfo bias_tensor_info, TensorInfo dst_tensor_info, const WeightsInfo weights_info,
                                              const PadStrideInfo &conv_info,
                                              const Size2D        &dilation) = 0;

    void compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape &bias_shape, TensorShape output_shape, const PadStrideInfo &conv_info,
                        const Size2D &dilation)
    {
        // The dataset is always in NCHW format - we need to make C the
        // innermost dimension because the fixed-format kernel work only
        // with NHWC layout.
        permute(input_shape, PermutationVector(2U, 0U, 1U));
        permute(weights_shape, PermutationVector(2U, 0U, 1U));
        permute(output_shape, PermutationVector(2U, 0U, 1U));
        const auto src_tensor_info    = TensorInfo(input_shape, 1, _data_type, _data_layout);
        const auto weight_tensor_info = TensorInfo(weights_shape, 1, _data_type, _data_layout);
        const auto bias_tensor_info   = TensorInfo(bias_shape, 1, _data_type, _data_layout);
        auto       dst_tensor_info    = TensorInfo(output_shape, 1, _data_type, _data_layout);

        const int kernel_height = weights_shape[get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT)];
        const int kernel_width  = weights_shape[get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH)];
        const int num_kernels   = weights_shape[get_data_layout_dimension_index(_data_layout, DataLayoutDimension::BATCHES)];

        const WeightsInfo query_weights_info(/*reshape_weights*/ false, kernel_width, kernel_height, num_kernels, false, arm_compute::WeightFormat::ANY);
        const bool        kernel_found = bool(ConvolutionFunction::has_opt_impl(_computed_weight_format, &src_tensor_info, &weight_tensor_info,
                                                                                &bias_tensor_info, &dst_tensor_info, conv_info, query_weights_info));
        // Make surethat the setup founds a fixed-format kernel as requested by the test case.
        ARM_COMPUTE_EXPECT(kernel_found, framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT(arm_compute::is_fixed_format(_computed_weight_format), framework::LogLevel::ERRORS);

        const WeightsInfo weights_info(/*reshape_weights*/ false, kernel_width, kernel_height, num_kernels, false, _computed_weight_format);
        configure_and_execute_kernel(src_tensor_info, weight_tensor_info, bias_tensor_info, dst_tensor_info, weights_info, conv_info,
                                     dilation);
    }
    void compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape, const PadStrideInfo &info,
                           const Size2D &dilation)
    {
        ARM_COMPUTE_UNUSED(input_shape, weights_shape, bias_shape, output_shape, info,
                           dilation);

        // Create reference
        SimpleTensor<ScalarType> src{ input_shape, _data_type };
        SimpleTensor<ScalarType> weights{ weights_shape, _data_type };
        SimpleTensor<ScalarType> bias{ bias_shape, _data_type };
        fill(src, 0);
        fill(bias, 1);
        fill(weights, 3);
        _reference = reference::convolution_layer<ScalarType>(src, weights, bias, output_shape, info, dilation, 1 /*num_groups*/);
    }
    DataLayout _data_layout{};
    DataType   _data_type{};

protected:
    std::unique_ptr<ConvolutionFunction> conv{};
    arm_compute::WeightFormat            _computed_weight_format{ arm_compute::WeightFormat::UNSPECIFIED };
    TensorClass                          _target{};
    SimpleTensor<ScalarType>             _reference{};
};

template <typename ConvolutionFunction, typename TensorClass, typename AccessorType, typename ScalarType, bool enable_fast_math>
class VariableWeightsFixture : public VariableWeightsFixtureBaseClass<ConvolutionFunction, TensorClass, AccessorType, ScalarType, enable_fast_math>
{
    void configure_and_execute_kernel(TensorInfo src_tensor_info, TensorInfo weight_tensor_info, TensorInfo bias_tensor_info, TensorInfo dst_tensor_info, const WeightsInfo weights_info,
                                      const PadStrideInfo &conv_info,
                                      const Size2D        &dilation)
    {
        this->conv->configure(&src_tensor_info, &weight_tensor_info, &bias_tensor_info, &dst_tensor_info, conv_info, weights_info, dilation, ActivationLayerInfo(), enable_fast_math);

        // Allocate input tensors
        auto             src                 = create_tensor<TensorClass>(src_tensor_info);
        auto             weights_original    = create_tensor<TensorClass>(weight_tensor_info);
        const TensorInfo new_tensor_info     = prepare_weights(weight_tensor_info, this->_computed_weight_format);
        auto             weights_transformed = create_tensor<TensorClass>(new_tensor_info);
        auto             bias                = create_tensor<TensorClass>(bias_tensor_info);
        src.allocator()->allocate();
        weights_original.allocator()->allocate();
        weights_transformed.allocator()->allocate();
        bias.allocator()->allocate();
        // Allocate destination tensor
        this->_target = create_tensor<TensorClass>(dst_tensor_info);
        this->_target.allocator()->allocate();

        // Prepare source and biases that are left unchanged.
        this->fill(AccessorType(src), 0);
        this->fill(AccessorType(bias), 1);

        // First run
        this->fill(AccessorType(weights_original), 2);
        rearrange_data<ScalarType, AccessorType>(AccessorType(weights_original), AccessorType(weights_transformed), this->_computed_weight_format);
        ITensorPack run_pack{ { TensorType::ACL_SRC_0, &src }, { TensorType::ACL_SRC_1, &weights_transformed }, { TensorType::ACL_SRC_2, &bias }, { TensorType::ACL_DST, &(this->_target) } };
        this->conv->run(run_pack);
        // Second run, with new weights
        this->fill(AccessorType(weights_original), 3);
        rearrange_data<ScalarType, AccessorType>(AccessorType(weights_original), AccessorType(weights_transformed), this->_computed_weight_format);
        this->conv->run(run_pack);
        src.allocator()->free();
        weights_original.allocator()->free();
        weights_transformed.allocator()->free();
        bias.allocator()->free();
    }
};

template <typename ConvolutionFunction, typename TensorClass, typename AccessorType, typename ScalarType, bool enable_fast_math>
class VariableWeightsFixtureNEInterface : public VariableWeightsFixtureBaseClass<ConvolutionFunction, TensorClass, AccessorType, ScalarType, enable_fast_math>
{
    void configure_and_execute_kernel(TensorInfo src_tensor_info, TensorInfo weight_tensor_info, TensorInfo bias_tensor_info, TensorInfo dst_tensor_info, const WeightsInfo weights_info,
                                      const PadStrideInfo &conv_info,
                                      const Size2D        &dilation)
    {
        // Allocate input tensors
        auto             src                 = create_tensor<TensorClass>(src_tensor_info);
        auto             weights_original    = create_tensor<TensorClass>(weight_tensor_info);
        const TensorInfo new_tensor_info     = prepare_weights(weight_tensor_info, this->_computed_weight_format);
        auto             weights_transformed = create_tensor<TensorClass>(new_tensor_info);
        auto             bias                = create_tensor<TensorClass>(bias_tensor_info);
        src.allocator()->allocate();
        weights_original.allocator()->allocate();
        weights_transformed.allocator()->allocate();
        bias.allocator()->allocate();
        // Allocate destination tensor
        this->_target = create_tensor<TensorClass>(dst_tensor_info);
        this->_target.allocator()->allocate();
        this->conv->configure(&src, &weights_transformed, &bias, &(this->_target), conv_info, weights_info, dilation, ActivationLayerInfo(), enable_fast_math);
        // Prepare source and biases that are left unchanged.
        this->fill(AccessorType(src), 0);
        this->fill(AccessorType(bias), 1);

        // First run
        this->fill(AccessorType(weights_original), 2);
        rearrange_data<ScalarType, AccessorType>(AccessorType(weights_original), AccessorType(weights_transformed), this->_computed_weight_format);
        this->conv->run();
        // Second run, with new weights
        this->fill(AccessorType(weights_original), 3);
        rearrange_data<ScalarType, AccessorType>(AccessorType(weights_original), AccessorType(weights_transformed), this->_computed_weight_format);
        this->conv->run();
        src.allocator()->free();
        weights_original.allocator()->free();
        weights_transformed.allocator()->free();
        bias.allocator()->free();
    }
};

template <typename ConvolutionClass, bool enable_fast_math>
class HasOptImplFixture : public framework::Fixture
{
public:
    void setup(DataType data_type, arm_compute::WeightFormat query_weight_format)
    {
        auto              conv        = std::make_unique<ConvolutionClass>();
        const auto        src_info    = TensorInfo(TensorShape(56U, 56U, 64U), 1, data_type, DataLayout::NHWC);
        const auto        weight_info = TensorInfo(TensorShape(64, 3U, 3U, 64U), 1, enable_fast_math ? DataType::BFLOAT16 : data_type, DataLayout::NHWC);
        const auto        bias_info   = TensorInfo(TensorShape(64U), 1, data_type, DataLayout::NHWC);
        auto              dst_info    = TensorInfo(TensorShape(56U, 56U, 64U), 1, data_type, DataLayout::NHWC);
        const auto        conv_info   = PadStrideInfo(1, 1, 1, 1, 1, 1, DimensionRoundingType::FLOOR);
        const WeightsInfo weights_info(false, 3U, 3U, 64U, false, query_weight_format);
        _kernel_found = bool(ConvolutionClass::has_opt_impl(_computed_weight_format, &src_info, &weight_info,
                                                            &bias_info, &dst_info, conv_info, weights_info,
                                                            Size2D(1U, 1U) /*dilation*/, ActivationLayerInfo() /*act_info*/, enable_fast_math));
    }

protected:
    bool                      _kernel_found{ false };
    arm_compute::WeightFormat _computed_weight_format{ arm_compute::WeightFormat::UNSPECIFIED };
};
#endif // ARM_COMPUTE_ENABLE_FIXED_FORMAT_KERNELS

} // namespace validation
} // namespace test
} // namespace arm_compute

#endif // ACL_TESTS_VALIDATION_FIXTURES_CONVOLUTIONLAYERFIXTURE_H