aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/dynamic_fusion/gpu/Integration.cpp
blob: a70f512f9f301b88c17f7785252b894151a8c198 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
 * Copyright (c) 2022-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/dynamic_fusion/runtime/gpu/cl/ClWorkloadRuntime.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/CastAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/attributes/Conv2dAttributes.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/GpuWorkloadSketch.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuAdd.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuCast.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuConv2d.h"
#include "arm_compute/dynamic_fusion/sketch/gpu/operators/GpuOutput.h"

#include "tests/CL/CLAccessor.h"
#include "tests/framework/Macros.h"
#include "tests/validation/Validation.h"
#include "tests/validation/dynamic_fusion/Utils.h"
#include "tests/validation/reference/ConvolutionLayer.h"
#include "tests/validation/reference/DepthConvertLayer.h"
#include "tests/validation/reference/ElementwiseOperations.h"
#include "tests/validation/reference/Permute.h"

using namespace arm_compute::experimental::dynamic_fusion;
using namespace arm_compute::test::validation::utils;

namespace arm_compute
{
namespace test
{
namespace validation
{
TEST_SUITE(CL)
TEST_SUITE(INTEGRATION)
TEST_SUITE(DYNAMIC_FUSION)
TEST_CASE(Conv2d, framework::DatasetMode::ALL)
{
    /* Computation:
     * out = conv2d1x1(direct_conv)(input, weights, bias)
     */
    CLScheduler::get().default_reinit();

    const auto data_type      = DataType::F32;
    const auto data_layout    = DataLayout::NHWC;
    const auto t_input_shape  = TensorShape(384, 12, 12);
    const auto t_weight_shape = TensorShape(384, 1, 1, 16);
    const auto t_dst_shape    = TensorShape(16, 12, 12);

    // Create a new workload sketch
    auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
    auto              gpu_ctx        = GpuWorkloadContext{ &cl_compile_ctx };
    GpuWorkloadSketch sketch{ &gpu_ctx };

    // Fuse conv2d
    Conv2dAttributes conv2d_attr{};
    TensorInfo       input_info  = sketch.create_tensor_info(t_input_shape, 1, data_type, data_layout);
    TensorInfo       weight_info = sketch.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));

    ITensorInfo *conv_out_info = GpuConv2d::create_op(sketch, &input_info, &weight_info, nullptr, conv2d_attr);

    TensorInfo dst_info = sketch.create_tensor_info();
    GpuOutput::create_op(sketch, conv_out_info, &dst_info);

    // Configure runtime
    ClWorkloadRuntime runtime;
    runtime.configure(sketch);

    // (Important) Allocate auxiliary tensor memory if there are any
    // Instead of using ACL allocated memory, the user can choose to import memory into the tensors
    for(auto &data : runtime.get_auxiliary_tensors())
    {
        CLTensor     *tensor      = data.first;
        AuxMemoryInfo aux_mem_req = data.second;
        tensor->allocator()->init(*data.first->info(), aux_mem_req.alignment);
        tensor->allocator()->allocate(); // Use ACL allocated memory
        // auto buf = cl::Buffer();
        // tensor->allocator()->import_memory(buf);  // Or, import external memory
    }

    // Construct user tensors
    CLTensor t_input{};
    CLTensor t_weight{};
    CLTensor t_dst{};

    // Initialize user tensors
    t_input.allocator()->init(input_info);
    t_weight.allocator()->init(weight_info);
    t_dst.allocator()->init(dst_info);

    // Allocate and fill user tensors
    // Instead of using ACL allocator, the user can choose to import memory into the tensors
    t_input.allocator()->allocate();
    t_weight.allocator()->allocate();
    t_dst.allocator()->allocate();
    fill<float>(CLAccessor(t_input), 0, library.get());
    fill<float>(CLAccessor(t_weight), 1, library.get());

    // Run runtime
    runtime.run({ &t_input, &t_weight, &t_dst });

    // Create reference
    SimpleTensor<float> ref_t_input{ t_input_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
    SimpleTensor<float> ref_t_weight{ t_weight_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };
    SimpleTensor<float> ref_t_bias_placeholder{ t_dst_shape, data_type, 1, QuantizationInfo(), DataLayout::NHWC };

    // Fill reference
    fill<float>(ref_t_input, 0, library.get());
    fill<float>(ref_t_weight, 1, library.get());

    auto ref_t_input_nchw            = reference::permute(ref_t_input, PermutationVector(1U, 2U, 0U));
    auto ref_t_weight_nchw           = reference::permute(ref_t_weight, PermutationVector(1U, 2U, 0U));
    auto ref_t_bias_placeholder_nchw = reference::permute(ref_t_bias_placeholder, PermutationVector(1U, 2U, 0U));
    auto t_dst_shape_nchw            = t_dst_shape;
    permute(t_dst_shape_nchw, PermutationVector(1U, 2U, 0U));

    PadStrideInfo legacy_pad_stride(conv2d_attr.stride().x(), conv2d_attr.stride().y(), conv2d_attr.pad().left, conv2d_attr.pad().right, conv2d_attr.pad().top, conv2d_attr.pad().bottom,
                                    DimensionRoundingType{});
    auto       ref_t_dst_nchw = reference::convolution_layer(ref_t_input_nchw, ref_t_weight_nchw, ref_t_bias_placeholder_nchw, t_dst_shape_nchw, legacy_pad_stride, conv2d_attr.dilation());
    const auto ref_t_dst      = reference::permute(ref_t_dst_nchw, PermutationVector(2U, 0U, 1U));

    RelativeTolerance<float> tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
    validate(CLAccessor(t_dst), ref_t_dst_nchw, tolerance_f32);
}
TEST_CASE(Add_Output_Add_Output, framework::DatasetMode::ALL)
{
    /* Computation:
     *   out_0 = in_0 + in_1
     *   out_1 = out_0 + in_2
     */
    CLScheduler::get().default_reinit();

    const auto data_type     = DataType::F32;
    const auto t_input_shape = TensorShape(33, 3, 2);

    // Create a new workload sketch
    auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
    auto              gpu_ctx        = GpuWorkloadContext{ &cl_compile_ctx };
    GpuWorkloadSketch sketch{ &gpu_ctx };

    auto in_0_info = sketch.create_tensor_info(t_input_shape, 1, data_type);
    auto in_1_info = sketch.create_tensor_info(t_input_shape, 1, data_type);
    auto in_2_info = sketch.create_tensor_info(t_input_shape, 1, data_type);

    auto out_0_info = sketch.create_tensor_info();
    auto out_1_info = sketch.create_tensor_info();

    auto ans_0_info = sketch.create_tensor_info();
    auto ans_1_info = sketch.create_tensor_info();

    GpuAdd::create_op(sketch, &in_0_info, &in_1_info, &ans_0_info);
    GpuOutput::create_op(sketch, &ans_0_info, &out_0_info);
    GpuAdd::create_op(sketch, &ans_0_info, &in_2_info, &ans_1_info);
    GpuOutput::create_op(sketch, &ans_1_info, &out_1_info);

    // Configure runtime
    ClWorkloadRuntime runtime;
    runtime.configure(sketch);

    // (Important) Allocate auxiliary tensor memory if there are any
    // Instead of using ACL allocated memory, the user can choose to import memory into the tensors
    for(auto &data : runtime.get_auxiliary_tensors())
    {
        CLTensor     *tensor      = data.first;
        AuxMemoryInfo aux_mem_req = data.second;
        tensor->allocator()->init(*data.first->info(), aux_mem_req.alignment);
        tensor->allocator()->allocate(); // Use ACL allocated memory
        // auto buf = cl::Buffer();
        // tensor->allocator()->import_memory(buf);  // Or, import external memory
    }

    // Construct user tensors
    CLTensor t_in_0{};
    CLTensor t_in_1{};
    CLTensor t_in_2{};

    CLTensor t_out_0{};
    CLTensor t_out_1{};

    // Initialize user tensors
    t_in_0.allocator()->init(in_0_info);
    t_in_1.allocator()->init(in_1_info);
    t_in_2.allocator()->init(in_2_info);

    t_out_0.allocator()->init(out_0_info);
    t_out_1.allocator()->init(out_1_info);

    // Allocate and fill user tensors
    // Instead of using ACL allocator, the user can choose to import memory into the tensors
    t_in_0.allocator()->allocate();
    t_in_1.allocator()->allocate();
    t_in_2.allocator()->allocate();

    t_out_0.allocator()->allocate();
    t_out_1.allocator()->allocate();

    fill<float>(CLAccessor(t_in_0), 0, library.get());
    fill<float>(CLAccessor(t_in_1), 1, library.get());
    fill<float>(CLAccessor(t_in_2), 2, library.get());

    // Run runtime
    runtime.run({ &t_in_0, &t_in_1, &t_in_2, &t_out_0, &t_out_1 });

    // Create reference
    SimpleTensor<float> ref_t_in_0{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_in_1{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_in_2{ t_input_shape, data_type, 1, QuantizationInfo() };

    SimpleTensor<float> ref_t_out_0{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_out_1{ t_input_shape, data_type, 1, QuantizationInfo() };

    // Fill reference
    fill<float>(ref_t_in_0, 0, library.get());
    fill<float>(ref_t_in_1, 1, library.get());
    fill<float>(ref_t_in_2, 2, library.get());

    reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_in_0, ref_t_in_1, ref_t_out_0, ConvertPolicy::WRAP);
    reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_out_0, ref_t_in_2, ref_t_out_1, ConvertPolicy::WRAP);

    RelativeTolerance<float> tolerance_f32(0.001f); /**< Tolerance value for comparing reference's output against implementation's output for floating point data types */
    validate(CLAccessor(t_out_0), ref_t_out_0, tolerance_f32);
    validate(CLAccessor(t_out_1), ref_t_out_1, tolerance_f32);
}
TEST_CASE(Add_Output_Add_Cast_Cast_Output, framework::DatasetMode::ALL)
{
    /* Computation:
     *   out_0 = in_0 + in_1
     *   out_1 = float(int32_t(out_0 + in_2))
     */
    CLScheduler::get().default_reinit();

    const auto data_type     = DataType::F32;
    const auto t_input_shape = TensorShape(3, 8, 5);

    // Create a new workload sketch
    auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
    auto              gpu_ctx        = GpuWorkloadContext{ &cl_compile_ctx };
    GpuWorkloadSketch sketch{ &gpu_ctx };

    auto in_0_info = sketch.create_tensor_info(t_input_shape, 1, data_type);
    auto in_1_info = sketch.create_tensor_info(t_input_shape, 1, data_type);
    auto in_2_info = sketch.create_tensor_info(t_input_shape, 1, data_type);

    auto out_0_info = sketch.create_tensor_info();
    auto out_1_info = sketch.create_tensor_info();

    auto ans_0_info = sketch.create_tensor_info();
    auto ans_1_info = sketch.create_tensor_info();
    auto ans_2_info = sketch.create_tensor_info();
    auto ans_3_info = sketch.create_tensor_info();

    CastAttributes cast_0_attr;
    cast_0_attr.data_type(DataType::S32).convert_policy(ConvertPolicy::SATURATE);

    CastAttributes cast_1_attr;
    cast_1_attr.data_type(DataType::F32).convert_policy(ConvertPolicy::SATURATE);

    GpuAdd::create_op(sketch, &in_0_info, &in_1_info, &ans_0_info);
    GpuOutput::create_op(sketch, &ans_0_info, &out_0_info);
    GpuAdd::create_op(sketch, &ans_0_info, &in_2_info, &ans_1_info);
    GpuCast::create_op(sketch, &ans_1_info, &ans_2_info, cast_0_attr);
    GpuCast::create_op(sketch, &ans_2_info, &ans_3_info, cast_1_attr);
    GpuOutput::create_op(sketch, &ans_3_info, &out_1_info);

    // Configure runtime
    ClWorkloadRuntime runtime;
    runtime.configure(sketch);

    // (Important) Allocate auxiliary tensor memory if there are any
    // Instead of using ACL allocated memory, the user can choose to import memory into the tensors
    for(auto &data : runtime.get_auxiliary_tensors())
    {
        CLTensor     *tensor      = data.first;
        AuxMemoryInfo aux_mem_req = data.second;
        tensor->allocator()->init(*data.first->info(), aux_mem_req.alignment);
        tensor->allocator()->allocate(); // Use ACL allocated memory
        // auto buf = cl::Buffer();
        // tensor->allocator()->import_memory(buf);  // Or, import external memory
    }

    // Construct user tensors
    CLTensor t_in_0{};
    CLTensor t_in_1{};
    CLTensor t_in_2{};

    CLTensor t_out_0{};
    CLTensor t_out_1{};

    // Initialize user tensors
    t_in_0.allocator()->init(in_0_info);
    t_in_1.allocator()->init(in_1_info);
    t_in_2.allocator()->init(in_2_info);

    t_out_0.allocator()->init(out_0_info);
    t_out_1.allocator()->init(out_1_info);

    // Allocate and fill user tensors
    // Instead of using ACL allocator, the user can choose to import memory into the tensors
    t_in_0.allocator()->allocate();
    t_in_1.allocator()->allocate();
    t_in_2.allocator()->allocate();

    t_out_0.allocator()->allocate();
    t_out_1.allocator()->allocate();

    fill<float>(CLAccessor(t_in_0), 0, library.get());
    fill<float>(CLAccessor(t_in_1), 1, library.get());
    fill<float>(CLAccessor(t_in_2), 2, library.get());

    // Run runtime
    runtime.run({ &t_in_0, &t_in_1, &t_in_2, &t_out_0, &t_out_1 });

    // Create reference
    SimpleTensor<float> ref_t_in_0{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_in_1{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_in_2{ t_input_shape, data_type, 1, QuantizationInfo() };

    SimpleTensor<float> ref_t_out_0{ t_input_shape, data_type, 1, QuantizationInfo() };
    SimpleTensor<float> ref_t_ans_1{ t_input_shape, data_type, 1, QuantizationInfo() };

    // Fill reference
    fill<float>(ref_t_in_0, 0, library.get());
    fill<float>(ref_t_in_1, 1, library.get());
    fill<float>(ref_t_in_2, 2, library.get());

    reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_in_0, ref_t_in_1, ref_t_out_0, ConvertPolicy::WRAP);
    reference::arithmetic_operation(ArithmeticOperation::ADD, ref_t_out_0, ref_t_in_2, ref_t_ans_1, ConvertPolicy::WRAP);
    const auto ref_t_ans_2 = reference::depth_convert<float, int32_t>(ref_t_ans_1, DataType::S32, ConvertPolicy::SATURATE, 0);
    const auto ref_t_out_1 = reference::depth_convert<int32_t, float>(ref_t_ans_2, DataType::F32, ConvertPolicy::SATURATE, 0);

    RelativeTolerance<float> tolerance_add_f32(0.001f);
    AbsoluteTolerance<float> tolerance_cast_f32(1.0f);
    validate(CLAccessor(t_out_0), ref_t_out_0, tolerance_add_f32);
    validate(CLAccessor(t_out_1), ref_t_out_1, tolerance_cast_f32);
}
TEST_SUITE(Invalid_Fusion_Should_Fail)
TEST_CASE(Multiple_Complex_Ops_0, framework::DatasetMode::ALL)
{
    /* Computation:
     * out = conv2d(conv2d(l0_input, l0_weight), l1_weight)
     */
    CLScheduler::get().default_reinit();

    const auto data_type      = DataType::F32;
    const auto data_layout    = DataLayout::NHWC;
    const auto t_input_shape  = TensorShape(384, 12, 12);
    const auto t_weight_shape = TensorShape(384, 1, 1, 16);
    auto       t_input_info   = TensorInfo(t_input_shape, 1, data_type, data_layout);
    auto       t_weight_info  = TensorInfo(t_weight_shape, 1, data_type, data_layout);
    auto       t_dst_info     = TensorInfo();

    Conv2dAttributes conv2d_attr{};

    // Create a new workload sketch
    auto              cl_compile_ctx = CLKernelLibrary::get().get_compile_context();
    auto              gpu_ctx        = GpuWorkloadContext{ &cl_compile_ctx };
    GpuWorkloadSketch sketch{ &gpu_ctx };

    // Create tensor infos
    TensorInfo   input_info  = sketch.create_tensor_info(t_input_shape, 1, data_type, data_layout);
    TensorInfo   weight_info = sketch.create_tensor_info(TensorInfo(t_weight_shape, 1, data_type, data_layout));
    ITensorInfo *dst_info;

    // Fuse conv2d into the workload
    {
        // Validate operator
        const Status success = GpuConv2d::validate_op(sketch, &input_info, &weight_info, nullptr, conv2d_attr);
        ARM_COMPUTE_EXPECT(bool(success), framework::LogLevel::ERRORS);

        dst_info = GpuConv2d::create_op(sketch, &input_info, &weight_info, nullptr, conv2d_attr);
    }

    // Create tensor infos
    TensorInfo weight_info_2 = sketch.create_tensor_info(t_weight_info);

    // Fuse conv2d into the workload
    {
        // Validate operator, should fail
        const Status success            = GpuConv2d::validate_op(sketch, dst_info, &weight_info_2, nullptr, conv2d_attr);
        const auto   expected_error_str = "Operator fusion test failed. This operator cannot be fused into the workload";

        ARM_COMPUTE_EXPECT(!bool(success), framework::LogLevel::ERRORS);
        ARM_COMPUTE_EXPECT((success.error_description().find(expected_error_str) != std::string::npos), framework::LogLevel::ERRORS);
    }
}
TEST_SUITE_END() // Invalid_Fusion_Should_Fail
TEST_SUITE_END() // DYNAMIC_FUSION
TEST_SUITE_END() // INTEGRATION
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute