aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/CPP/ConvolutionLayer.cpp
blob: 1824ada7919f4f6ec7076dcf78d1b92651793243 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "ConvolutionLayer.h"

#include "tests/validation/FixedPoint.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/half.h"

namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
namespace
{
inline bool is_valid_pixel(int i, int min, int max)
{
    return (i >= min && i < max);
}

// 3D convolution for floating point type
template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type = 0>
void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int fixed_point_position)
{
    ARM_COMPUTE_UNUSED(fixed_point_position);

    const int half_width_weights  = width_weights / 2;
    const int half_height_weights = height_weights / 2;

    // Reset accumulator
    T acc(0);

    // Compute a 2D convolution for each IFM and accumulate the result
    for(int ifm = 0; ifm < depth_in; ++ifm)
    {
        // Compute the offset for the input slice
        const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;

        // Compute 2D convolution
        for(int yk = -half_height_weights; yk <= half_height_weights; ++yk)
        {
            for(int xk = -half_width_weights; xk <= half_width_weights; ++xk)
            {
                // Check if the pixel is out-of-bound
                if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in))
                {
                    const int idx = xk + half_width_weights;
                    const int idy = yk + half_height_weights;

                    const T i_value = in[offset_slice_in + xk + yk * width_in];
                    const T w_value = weights[idx + idy * width_weights + ifm * width_weights * height_weights];

                    acc += i_value * w_value;
                }
            }
        }
    }

    // Accumulate the bias and store the result
    *out = acc + (*bias);
}

// 3D convolution for fixed point type
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights,
                   int fixed_point_position)
{
    const int half_width_weights  = width_weights / 2;
    const int half_height_weights = height_weights / 2;

    using namespace fixed_point_arithmetic;
    using promoted_type = fixed_point_arithmetic::traits::promote_t<T>;

    // Reset accumulator
    fixed_point<promoted_type> acc(0, fixed_point_position);

    // Compute a 2D convolution for each IFM and accumulate the result
    for(int ifm = 0; ifm < depth_in; ++ifm)
    {
        // Compute the offset for the input slice
        const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in;

        // Compute 2D convolution
        for(int yk = -half_height_weights; yk <= half_height_weights; ++yk)
        {
            for(int xk = -half_width_weights; xk <= half_width_weights; ++xk)
            {
                // Check if the pixel is out-of-bound
                if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in))
                {
                    const int idx = xk + half_width_weights;
                    const int idy = yk + half_height_weights;

                    const fixed_point<promoted_type> i_value(in[offset_slice_in + xk + yk * width_in], fixed_point_position, true);
                    const fixed_point<promoted_type> w_value(weights[idx + idy * width_weights + ifm * width_weights * height_weights], fixed_point_position, true);
                    const fixed_point<promoted_type> iw = i_value * w_value;
                    acc                                 = iw + acc;
                }
            }
        }
    }

    // Get the bias
    const fixed_point<promoted_type> b(*bias, fixed_point_position, true);

    // Accumulate the bias and covert back
    acc = acc + b;
    fixed_point<T> res(acc);
    *out = res.raw();
}
} // namespace

template <typename T>
SimpleTensor<T> convolution_layer(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<T> &bias, const TensorShape &output_shape, const PadStrideInfo &info)
{
    // Create reference
    SimpleTensor<T> dst{ output_shape, src.data_type(), 1, src.fixed_point_position() };

    // Compute reference
    const int width_in       = src.shape().x();
    const int height_in      = src.shape().y();
    const int depth_in       = src.shape().z();
    const int width_out      = dst.shape().x();
    const int height_out     = dst.shape().y();
    const int depth_out      = dst.shape().z();
    const int width_weights  = weights.shape().x();
    const int height_weights = weights.shape().y();
    const int depth_weights  = weights.shape().z();
    const int pad_xi         = std::min(static_cast<int>(info.pad().first), width_weights / 2);
    const int pad_yi         = std::min(static_cast<int>(info.pad().second), height_weights / 2);
    const int start_xi       = width_weights / 2 - pad_xi;
    const int start_yi       = height_weights / 2 - pad_yi;
    const int end_xi         = width_in - start_xi;
    const int end_yi         = height_in - start_yi;
    const int stride_xi      = info.stride().first;
    const int stride_yi      = info.stride().second;
    const int num_batches    = src.shape().total_size() / (width_in * height_in * depth_in);

    for(int r = 0; r < num_batches; ++r)
    {
        for(int yi = start_yi; yi < end_yi; yi += stride_yi)
        {
            for(int xi = start_xi; xi < end_xi; xi += stride_xi)
            {
                for(int ofm = 0; ofm < depth_out; ++ofm)
                {
                    // Compute input and output offsets
                    const int offset_in  = r * width_in * height_in * depth_in;
                    const int xo         = (xi - start_xi) / stride_xi;
                    const int yo         = (yi - start_yi) / stride_yi;
                    const int offset_out = xo + yo * width_out + ofm * width_out * height_out + r * width_out * height_out * depth_out;

                    // Compute 3D convolution
                    convolution3d(src.data() + offset_in,
                                  weights.data() + ofm * width_weights * height_weights * depth_weights,
                                  bias.data() + ofm,
                                  dst.data() + offset_out,
                                  xi, yi,
                                  width_in, height_in, depth_in,
                                  width_weights, height_weights,
                                  src.fixed_point_position());
                }
            }
        }
    }

    return dst;
}

template SimpleTensor<float> convolution_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, const TensorShape &output_shape,
                                               const PadStrideInfo &info);
template SimpleTensor<half_float::half> convolution_layer(const SimpleTensor<half_float::half> &src, const SimpleTensor<half_float::half> &weights, const SimpleTensor<half_float::half> &bias,
                                                          const TensorShape &output_shape, const PadStrideInfo &info);
template SimpleTensor<qint8_t> convolution_layer(const SimpleTensor<qint8_t> &src, const SimpleTensor<qint8_t> &weights, const SimpleTensor<qint8_t> &bias, const TensorShape &output_shape,
                                                 const PadStrideInfo &info);
template SimpleTensor<qint16_t> convolution_layer(const SimpleTensor<qint16_t> &src, const SimpleTensor<qint16_t> &weights, const SimpleTensor<qint16_t> &bias, const TensorShape &output_shape,
                                                  const PadStrideInfo &info);
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute