aboutsummaryrefslogtreecommitdiff
path: root/tests/Utils.h
blob: 4745b8bbd726e1aa4c2889210df7c2112eb31330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_TEST_UTILS_H__
#define __ARM_COMPUTE_TEST_UTILS_H__

#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "support/ToolchainSupport.h"

#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>

namespace arm_compute
{
namespace test
{
/** Round floating-point value with half value rounding to positive infinity.
 *
 * @param[in] value floating-point value to be rounded.
 *
 * @return Floating-point value of rounded @p value.
 */
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_up(T value)
{
    return std::floor(value + 0.5f);
}

/** Round floating-point value with half value rounding to nearest even.
 *
 * @param[in] value   floating-point value to be rounded.
 * @param[in] epsilon precision.
 *
 * @return Floating-point value of rounded @p value.
 */
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
{
    T positive_value = std::abs(value);
    T ipart          = 0;
    std::modf(positive_value, &ipart);
    // If 'value' is exactly halfway between two integers
    if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
    {
        // If 'ipart' is even then return 'ipart'
        if(std::fmod(ipart, 2.f) < epsilon)
        {
            return support::cpp11::copysign(ipart, value);
        }
        // Else return the nearest even integer
        return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
    }
    // Otherwise use the usual round to closest
    return support::cpp11::copysign(support::cpp11::round(positive_value), value);
}

namespace traits
{
// *INDENT-OFF*
// clang-format off
template <typename T> struct promote { };
template <> struct promote<uint8_t> { using type = uint16_t; };
template <> struct promote<int8_t> { using type = int16_t; };
template <> struct promote<uint16_t> { using type = uint32_t; };
template <> struct promote<int16_t> { using type = int32_t; };
template <> struct promote<uint32_t> { using type = uint64_t; };
template <> struct promote<int32_t> { using type = int64_t; };
template <> struct promote<float> { using type = float; };
template <> struct promote<half> { using type = half; };


template <typename T>
using promote_t = typename promote<T>::type;

template <typename T>
using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
// clang-format on
// *INDENT-ON*
}

/** Look up the format corresponding to a channel.
 *
 * @param[in] channel Channel type.
 *
 * @return Format that contains the given channel.
 */
inline Format get_format_for_channel(Channel channel)
{
    switch(channel)
    {
        case Channel::R:
        case Channel::G:
        case Channel::B:
            return Format::RGB888;
        default:
            throw std::runtime_error("Unsupported channel");
    }
}

/** Return the format of a channel.
 *
 * @param[in] channel Channel type.
 *
 * @return Format of the given channel.
 */
inline Format get_channel_format(Channel channel)
{
    switch(channel)
    {
        case Channel::R:
        case Channel::G:
        case Channel::B:
            return Format::U8;
        default:
            throw std::runtime_error("Unsupported channel");
    }
}

/** Base case of foldl.
 *
 * @return value.
 */
template <typename F, typename T>
inline T foldl(F &&, const T &value)
{
    return value;
}

/** Base case of foldl.
 *
 * @return func(value1, value2).
 */
template <typename F, typename T, typename U>
inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
{
    return func(value1, value2);
}

/** Fold left.
 *
 * @param[in] func    Binary function to be called.
 * @param[in] initial Initial value.
 * @param[in] value   Argument passed to the function.
 * @param[in] values  Remaining arguments.
 */
template <typename F, typename I, typename T, typename... Vs>
inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
{
    return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
}

/** Create a valid region based on tensor shape, border mode and border size
 *
 * @param[in] shape            Shape used as size of the valid region.
 * @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
 * @param[in] border_size      (Optional) Border size used to specify the region to exclude.
 *
 * @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
 *  return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
 */
inline ValidRegion shape_to_valid_region(TensorShape shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
{
    Coordinates anchor;
    anchor.set_num_dimensions(shape.num_dimensions());

    if(border_undefined)
    {
        ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);

        anchor.set(0, border_size.left);
        anchor.set(1, border_size.top);

        const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
        const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));

        shape.set(0, valid_shape_x);
        shape.set(1, valid_shape_y);
    }

    return ValidRegion(std::move(anchor), std::move(shape));
}

/** Write the value after casting the pointer according to @p data_type.
 *
 * @warning The type of the value must match the specified data type.
 *
 * @param[out] ptr       Pointer to memory where the @p value will be written.
 * @param[in]  value     Value that will be written.
 * @param[in]  data_type Data type that will be written.
 */
template <typename T>
void store_value_with_data_type(void *ptr, T value, DataType data_type)
{
    switch(data_type)
    {
        case DataType::U8:
            *reinterpret_cast<uint8_t *>(ptr) = value;
            break;
        case DataType::S8:
        case DataType::QS8:
            *reinterpret_cast<int8_t *>(ptr) = value;
            break;
        case DataType::U16:
            *reinterpret_cast<uint16_t *>(ptr) = value;
            break;
        case DataType::S16:
        case DataType::QS16:
            *reinterpret_cast<int16_t *>(ptr) = value;
            break;
        case DataType::U32:
            *reinterpret_cast<uint32_t *>(ptr) = value;
            break;
        case DataType::S32:
            *reinterpret_cast<int32_t *>(ptr) = value;
            break;
        case DataType::U64:
            *reinterpret_cast<uint64_t *>(ptr) = value;
            break;
        case DataType::S64:
            *reinterpret_cast<int64_t *>(ptr) = value;
            break;
        case DataType::F16:
            *reinterpret_cast<half *>(ptr) = value;
            break;
        case DataType::F32:
            *reinterpret_cast<float *>(ptr) = value;
            break;
        case DataType::F64:
            *reinterpret_cast<double *>(ptr) = value;
            break;
        case DataType::SIZET:
            *reinterpret_cast<size_t *>(ptr) = value;
            break;
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }
}

/** Saturate a value of type T against the numeric limits of type U.
 *
 * @param[in] val Value to be saturated.
 *
 * @return saturated value.
 */
template <typename U, typename T>
T saturate_cast(T val)
{
    if(val > static_cast<T>(std::numeric_limits<U>::max()))
    {
        val = static_cast<T>(std::numeric_limits<U>::max());
    }
    if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
    {
        val = static_cast<T>(std::numeric_limits<U>::lowest());
    }
    return val;
}

/** Find the signed promoted common type.
 */
template <typename... T>
struct common_promoted_signed_type
{
    using common_type       = typename std::common_type<T...>::type;
    using promoted_type     = traits::promote_t<common_type>;
    using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
};

/** Convert a linear index into n-dimensional coordinates.
 *
 * @param[in] shape Shape of the n-dimensional tensor.
 * @param[in] index Linear index specifying the i-th element.
 *
 * @return n-dimensional coordinates.
 */
inline Coordinates index2coord(const TensorShape &shape, int index)
{
    int num_elements = shape.total_size();

    ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
    ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");

    Coordinates coord{ 0 };

    for(int d = shape.num_dimensions() - 1; d >= 0; --d)
    {
        num_elements /= shape[d];
        coord.set(d, index / num_elements);
        index %= num_elements;
    }

    return coord;
}

/** Linearise the given coordinate.
 *
 * Transforms the given coordinate into a linear offset in terms of
 * elements.
 *
 * @param[in] shape Shape of the n-dimensional tensor.
 * @param[in] coord The to be converted coordinate.
 *
 * @return Linear offset to the element.
 */
inline int coord2index(const TensorShape &shape, const Coordinates &coord)
{
    ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
    ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");

    int index    = 0;
    int dim_size = 1;

    for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
    {
        index += coord[i] * dim_size;
        dim_size *= shape[i];
    }

    return index;
}

/** Check if a coordinate is within a valid region */
inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
{
    for(size_t d = 0; d < Coordinates::num_max_dimensions; ++d)
    {
        if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
        {
            return false;
        }
    }

    return true;
}

/** Create and initialize a tensor of the given type.
 *
 * @param[in] shape                Tensor shape.
 * @param[in] data_type            Data type.
 * @param[in] num_channels         (Optional) Number of channels.
 * @param[in] fixed_point_position (Optional) Number of fractional bits.
 *
 * @return Initialized tensor of given type.
 */
template <typename T>
inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1, int fixed_point_position = 0)
{
    T tensor;
    tensor.allocator()->init(TensorInfo(shape, num_channels, data_type, fixed_point_position));

    return tensor;
}

/** Create a vector of random ROIs.
 *
 * @param[in] shape     The shape of the input tensor.
 * @param[in] pool_info The ROI pooling information.
 * @param[in] num_rois  The number of ROIs to be created.
 * @param[in] seed      The random seed to be used.
 *
 * @return A vector that contains the requested number of random ROIs
 */
inline std::vector<ROI> generate_random_rois(const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, unsigned int num_rois, std::random_device::result_type seed)
{
    ARM_COMPUTE_ERROR_ON((pool_info.pooled_width() < 4) || (pool_info.pooled_height() < 4));

    std::vector<ROI> rois;
    std::mt19937     gen(seed);
    const int        pool_width  = pool_info.pooled_width();
    const int        pool_height = pool_info.pooled_height();
    const float      roi_scale   = pool_info.spatial_scale();

    // Calculate distribution bounds
    const auto scaled_width  = static_cast<int>((shape.x() / roi_scale) / pool_width);
    const auto scaled_height = static_cast<int>((shape.y() / roi_scale) / pool_height);
    const auto min_width     = static_cast<int>(pool_width / roi_scale);
    const auto min_height    = static_cast<int>(pool_height / roi_scale);

    // Create distributions
    std::uniform_int_distribution<int> dist_batch(0, shape[3] - 1);
    std::uniform_int_distribution<int> dist_x(0, scaled_width);
    std::uniform_int_distribution<int> dist_y(0, scaled_height);
    std::uniform_int_distribution<int> dist_w(min_width, std::max(min_width, (pool_width - 2) * scaled_width));
    std::uniform_int_distribution<int> dist_h(min_height, std::max(min_height, (pool_height - 2) * scaled_height));

    for(unsigned int r = 0; r < num_rois; ++r)
    {
        ROI roi;
        roi.batch_idx   = dist_batch(gen);
        roi.rect.x      = dist_x(gen);
        roi.rect.y      = dist_y(gen);
        roi.rect.width  = dist_w(gen);
        roi.rect.height = dist_h(gen);
        rois.push_back(roi);
    }

    return rois;
}

template <typename T, typename ArrayAccessor_T>
inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
{
    array.resize(v.size());
    std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
}

/** Obtain numpy type string from DataType.
 *
 * @param[in] data_type Data type.
 *
 * @return numpy type string.
 */
inline std::string get_typestring(DataType data_type)
{
    // Check endianness
    const unsigned int i = 1;
    const char        *c = reinterpret_cast<const char *>(&i);
    std::string        endianness;
    if(*c == 1)
    {
        endianness = std::string("<");
    }
    else
    {
        endianness = std::string(">");
    }
    const std::string no_endianness("|");

    switch(data_type)
    {
        case DataType::U8:
            return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
        case DataType::S8:
            return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
        case DataType::U16:
            return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
        case DataType::S16:
            return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
        case DataType::U32:
            return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
        case DataType::S32:
            return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
        case DataType::U64:
            return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
        case DataType::S64:
            return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
        case DataType::F32:
            return endianness + "f" + support::cpp11::to_string(sizeof(float));
        case DataType::F64:
            return endianness + "f" + support::cpp11::to_string(sizeof(double));
        case DataType::SIZET:
            return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
        default:
            ARM_COMPUTE_ERROR("NOT SUPPORTED!");
    }
}
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_UTILS_H__ */