aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/heuristics/indirect_conv/ClIndirectConvDefaultConfigValhall.cpp
blob: 3380d8f1b7c0f48fde1440c3f91b76fd0289d408 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
 * Copyright (c) 2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/runtime/heuristics/indirect_conv/ClIndirectConvDefaultConfigValhall.h"

#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/GPUTarget.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

namespace arm_compute
{
namespace cl_indirect_conv
{
using namespace arm_compute::misc::shape_calculator;

ClIndirectConvDefaultConfigValhall::ClIndirectConvDefaultConfigValhall(GPUTarget gpu) : IClIndirectConvKernelConfig(gpu)
{
}

DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure(const ITensorInfo   *src,
                                                                          const ITensorInfo   *wei,
                                                                          const PadStrideInfo &conv_info)
{
    using ConfigurationFunctionExecutorPtr = DirectConvComputeKernelInfo (ClIndirectConvDefaultConfigValhall::*)(
        const ITensorInfo *src, const ITensorInfo *wei, const PadStrideInfo &conv_info);

    ClIndirectConvConfigArray<ConfigurationFunctionExecutorPtr> configs_G77(
        &ClIndirectConvDefaultConfigValhall::configure_G77_f32, &ClIndirectConvDefaultConfigValhall::configure_G77_f16);

    // Important note: Indirect convolution should not be used when the kernel size is 1x1 (pointwise). The reason is because the indirect buffer makes
    // indirect convolution less efficient than direct convolution or gemm. For this reason, the heuristic of indirect convolution has not been tuned
    // for the pointwise convolution cases.

    ConfigurationFunctionExecutorPtr func = configs_G77.get_function(src->data_type());

    ARM_COMPUTE_ERROR_ON_MSG(func == nullptr, "Data type not supported for indirect convolution");
    return (this->*func)(src, wei, conv_info);
}

DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f32(const ITensorInfo   *src,
                                                                                  const ITensorInfo   *wei,
                                                                                  const PadStrideInfo &conv_info)
{
    DirectConvComputeKernelInfo desc;

    if (src->data_layout() == DataLayout::NHWC)
    {
        const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info);
        const bool        export_weights_to_cl_image = export_to_cl_image(wei);
        const int32_t     stride_x                   = conv_info.stride().first;
        const int32_t     stride_y                   = conv_info.stride().second;
        const int32_t     ofm                        = dst_shape[0];
        const int32_t     m                          = (dst_shape[1] / stride_x) * (dst_shape[2] / stride_y);

        desc.export_weights_to_cl_image = export_weights_to_cl_image;

        if (ofm <= 4)
        {
            desc.m0 = 1;
            desc.n0 = 2;
            desc.k0 = 16;
        }
        else
        {
            // The 16000 threshold value has been identified as the right
            // one for using the biggest block size allowed on F32: 5x4x4
            if (m < 16000)
            {
                desc.m0 = 4;
                desc.n0 = 4;
                desc.k0 = 4;
            }
            else
            {
                desc.m0 = 5;
                desc.n0 = 4;
                desc.k0 = 4;
            }
        }
    }

    return desc;
}

DirectConvComputeKernelInfo ClIndirectConvDefaultConfigValhall::configure_G77_f16(const ITensorInfo   *src,
                                                                                  const ITensorInfo   *wei,
                                                                                  const PadStrideInfo &conv_info)
{
    DirectConvComputeKernelInfo desc;

    if (src->data_layout() == DataLayout::NHWC)
    {
        const TensorShape wei_shape = wei->tensor_shape();
        const TensorShape dst_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *wei, conv_info);
        const bool        export_weights_to_cl_image = export_to_cl_image(wei);

        const int32_t ofm = dst_shape[0];
        const int32_t m   = dst_shape[1] * dst_shape[2];
        const int32_t k   = wei_shape[0];

        desc.export_weights_to_cl_image = export_weights_to_cl_image;

        if (ofm <= 4)
        {
            // k0 should be as larger as possible. However, we should avoid
            // having left-over for loops that make the implementation slower.
            if ((k % 16) == 0)
            {
                desc.k0 = 16;
            }
            else if ((k % 8) == 0)
            {
                desc.k0 = 8;
            }
            else
            {
                desc.k0 = 4;
            }

            desc.m0 = 1;
            desc.n0 = ofm;
        }
        else
        {
            // The 16000 threshold value has been identified as the right
            // one for using the biggest block size allowed on F16: 8x4
            if (m >= 16000 && k < 4)
            {
                desc.m0 = 8;
                desc.n0 = 4;
                desc.k0 = 4; // k0 is clamped to k inside the kernel when k is less than 4
            }
            else
            {
                desc.m0 = 5;
                desc.n0 = 4;
                desc.k0 = 8;
            }
        }
    }

    return desc;
}
} // namespace cl_indirect_conv
} // namespace arm_compute