aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEGEMMAssemblyDispatch.cpp
blob: 8114adadc2651e261c47ec59af718bea6915535e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
 * Copyright (c) 2018-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/runtime/NEON/functions/NEGEMMAssemblyDispatch.h"

#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/kernels/assembly/NEGEMMAssemblyWrapperKernel.h"
#include "src/core/NEON/kernels/assembly/arm_gemm.hpp"

#include <arm_neon.h>
#include <cstdlib>

namespace arm_compute
{
namespace
{
struct free_delete
{
    void operator()(void *x)
    {
        free(x);
    }
};

struct Params
{
    unsigned int M;
    unsigned int N;
    unsigned int K;
    unsigned int batches;
    unsigned int multis;
    unsigned int sections;
    bool         indirect;
};

Params extract_parameters(const ITensor *a, const ITensor *b, const ITensor *d, const AsmGemmInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);

    Params p;
    p.M        = d->info()->tensor_shape().y();
    p.K        = a->info()->tensor_shape().x();
    p.N        = d->info()->tensor_shape().x();
    p.batches  = 1;
    p.multis   = 1;
    p.sections = 1;
    p.indirect = false;

    if(info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect)
    {
        p.indirect = true;
        p.sections = b->info()->tensor_shape()[2] * b->info()->tensor_shape()[3];
    }
    else
    {
        p.multis  = b->info()->tensor_shape().z();
        p.batches = d->info()->tensor_shape().total_size_upper(2) / p.multis; //COMPMID-1423: Agree on and document the layout of gemm inputs/outputs
    }

    // Update M in case of GEMM3D for output
    if(info.depth_output_gemm3d != 0)
    {
        p.M       = d->info()->tensor_shape().y() * d->info()->tensor_shape().z();
        p.batches = d->info()->tensor_shape().total_size_upper(3) / p.multis;
    }

    return p;
}

arm_gemm::Activation map_to_arm_gemm_activation(const ActivationLayerInfo &act)
{
    arm_gemm::Activation gemm_act;

    // Early exit in case lower bound is other than 0, as it's not yet supported
    if(act.b() != 0.f)
    {
        return gemm_act;
    }

    switch(act.activation())
    {
        case ActivationLayerInfo::ActivationFunction::RELU:
            gemm_act.type = arm_gemm::Activation::Type::ReLU;
            break;
        case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
            gemm_act.type   = arm_gemm::Activation::Type::BoundedReLU;
            gemm_act.param1 = act.a();
            gemm_act.param2 = 0.f;
            break;
        case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
            gemm_act.type   = arm_gemm::Activation::Type::BoundedReLU;
            gemm_act.param1 = act.a();
            gemm_act.param2 = act.b();
            break;
        default:
            gemm_act.type = arm_gemm::Activation::Type::None;
    }

    return gemm_act;
}

IScheduler::Hints scheduling_hint_heuristic(arm_gemm::GemmMethod method, DataType data_type)
{
    // Schedule assembly kernel
    const int         granule_threshold = 200;
    IScheduler::Hints scheduling_hint   = IScheduler::Hints(Window::DimX);
    if(method == arm_gemm::GemmMethod::GEMM_INTERLEAVED && data_type == DataType::F32)
    {
        scheduling_hint = IScheduler::Hints(Window::DimX, IScheduler::StrategyHint::DYNAMIC, granule_threshold);
    }
    else if(method == arm_gemm::GemmMethod::GEMM_INTERLEAVED_2D && (data_type == DataType::F32 || data_type == DataType::F16 || data_type == DataType::U8 || data_type == DataType::S8))
    {
        //GEMM_INTERLEAVED supports 2D parallelism, IScheduler::split_dimensions_all signals to parallelise over all window dimensions
        scheduling_hint = IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
    }
    else if(method == arm_gemm::GemmMethod::QUANTIZE_WRAPPER_2D && (data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED))
    {
        //special case for QASYMM8 to support 2D parallelism, scheduler here may be tweaked differently compared to FP32 case
        scheduling_hint = IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
    }

    return scheduling_hint;
}

template <typename TypeInput, typename TypeOutput>
class FallbackTransform : public ITransformWeights
{
public:
    FallbackTransform() noexcept {};
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    FallbackTransform(const FallbackTransform &) = delete;
    /** Default move constructor */
    FallbackTransform(FallbackTransform &&) = default;
    /** Prevent instances of this class from being copied (As this class contains pointers) */
    FallbackTransform &operator=(const FallbackTransform &) = delete;
    /** Default move assignment operator */
    FallbackTransform &operator=(FallbackTransform &&) = default;
    void               run() override
    {
        _output.allocator()->allocate();
        ARM_COMPUTE_ERROR_ON(_output.buffer() == nullptr);
        _gemm_kernel_asm->pretranspose_B_array(_output.buffer(), _in1_ptr, _ldb, _multi_stride_b);
        _reshape_run = true;
    }

    void release() override
    {
        _output.allocator()->free();
    }

    ITensor *get_weights() override
    {
        return &_output;
    }

    uint32_t uid() override
    {
        uint32_t id = (_B_pretranspose_size | 0x80000000);
        return id;
    }

    void configure(size_t B_pretranspose_size, unsigned int alignment)
    {
        _output.allocator()->init(TensorInfo(TensorShape{ (B_pretranspose_size + alignment /* FIXME: remove alignment after COMPMID-1088 */) }, 1, DataType::S8), alignment);
        _B_pretranspose_size = B_pretranspose_size;
    }

    void set_pretranspose(ITensor *tensor)
    {
        if(!_reshape_run)
        {
            _gemm_kernel_asm->set_pretransposed_B_data(tensor->buffer());
        }
    }

    void set_args(const int ldb, const TypeInput *in1_ptr, const int multi_stride_b, std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> gemm_kernel_asm)
    {
        _ldb             = ldb;
        _in1_ptr         = in1_ptr;
        _multi_stride_b  = multi_stride_b;
        _gemm_kernel_asm = gemm_kernel_asm;
    }

private:
    Tensor           _output{};
    int              _ldb{};
    const TypeInput *_in1_ptr{};
    int              _multi_stride_b{};
    size_t           _B_pretranspose_size{};
    std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{ nullptr };
};

/** Fallback in case ACL doesn't have a function */
template <typename TypeInput, typename TypeOutput, class OutputStage = arm_gemm::Nothing>
class Fallback : public NEGEMMAssemblyDispatch::IFallback
{
public:
    /** Destructor */
    ~Fallback()
    {
        // Release memory if we have allocated the memory ourselves
        if(_pretranspose && !(_weights_manager && _weights_manager->are_weights_managed(_b)))
        {
            delete _pretranspose;
        }
    }

    /** Initialise the functions's input and output.
     *
     * @param[in]  a               Input tensor containing the Matrix A.
     * @param[in]  b               Input tensor containing the Matrix B.
     * @param[in]  c               Input tensor containing the Matrix C.
     * @param[out] d               Output tensor to store the result of matrix multiplication.
     * @param[in]  args            Matrix multiplication information.
     * @param[in]  gemm_info       GEMM meta-data
     * @param[in]  memory_group    Memory group to be used by the function.
     * @param[in]  weights_manager Weights manager to be used by the function.
     * @param[in]  os              Output stage meta-data.
     */
    void configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d,
                   arm_gemm::GemmArgs args, const AsmGemmInfo &gemm_info,
                   MemoryGroup &memory_group, IWeightsManager *weights_manager, const OutputStage &os = {});

    /** Set requantization shifts to be used
     *
     * @param[in] shifts Requantization shifts
     *
     * @return Pointer to the shift data
     */
    /** Set requantization data to be used
      *
      *
      * @param shifts       Requantization shifts
      * @param multipliers  Requantization multipliers
      *
      * @return A tuple with the pointers to the shift and multiplier data respectively
      */
    std::tuple<bool, const int32_t *, const int32_t *, const int32_t *> set_requantize_data(const std::vector<int32_t> &shifts,
                                                                                            const std::vector<int32_t> &multipliers);

    // Inherited methods overridden:
    void run() override;
    void prepare() override;
    bool is_configured() const override;

private:
    /** Allocate a workspace tensor.
     *
     * @param[in] workspace_size Size to allocate.
     * @param[in] memory_group   Tensor memory group.
     * @param[in] alignment      Workspace memory alignment.
     */
    void allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment);
    /** Configure the indirect buffer
     *
     * @param[in]  a    Input tensor containing the Matrix A.
     * @param[in]  b    Input tensor containing the Matrix B.
     * @param[out] d    Output tensor to store the result of matrix multiplication.
     * @param[in]  info GEMM meta-data
     */
    void configure_indirect(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info);
    /** Prepare the indirect buffer */
    void prepare_indirect_buffer();

    /** Assembly Gemm kernel */
    std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{ nullptr };
    /** Optimised Neon kernel */
    std::unique_ptr<INEKernel> _optimised_kernel{ nullptr };
    /** Input A */
    const ITensor *_a
    {
        nullptr
    };
    /** Input B */
    const ITensor *_b
    {
        nullptr
    };
    const ITensor *_c
    {
        nullptr
    };
    /** Output */
    ITensor *_d{ nullptr };
    /** GEMM workspace */
    Tensor _workspace{};
    /** Pre-transpose tensor */
    ITensor *_pretranspose{ nullptr };
    /** Prepared flag */
    bool _is_prepared{ false };
    /** GEMM meta-data */
    AsmGemmInfo _gemm_info{};
    /** Weights manager */
    IWeightsManager *_weights_manager{ nullptr };
    /** Weights transform object */
    FallbackTransform<TypeInput, TypeOutput> _weights_transform{};
    /** GEMM kernel description */
    arm_gemm::KernelDescription _kernel_info{};
    /** Per channel quantization shifts */
    std::vector<int32_t> _shifts{};
    std::vector<int32_t> right_shifts{};
    std::vector<int32_t> left_shifts{};
    /** Per channel quantization multipliers */
    std::vector<int32_t> _multipliers{};
    /** Indirect buffer */
    std::unique_ptr<const TypeInput *const *, free_delete> _indirect_arg{};
    std::unique_ptr<const TypeInput *, free_delete>        _indirect_buf{};
    std::vector<TypeInput>          _indirect_pad{};
    arm_gemm::ConvolutionParameters _cp{};
};

template <typename TypeInput, typename TypeOutput, class OutputStage>
std::tuple<bool, const int32_t *, const int32_t *, const int32_t *>
Fallback<TypeInput, TypeOutput, OutputStage>::set_requantize_data(const std::vector<int32_t> &shifts, const std::vector<int32_t> &multipliers)
{
    _multipliers   = multipliers;
    _shifts        = shifts;
    bool need_left = false;
    for(const auto s : _shifts)
    {
        left_shifts.push_back(std::max(-s, int32_t(0)));
        right_shifts.push_back(std::min(-s, int32_t(0)));
        if(s < 0 && !need_left)
        {
            need_left = true;
        }
    }
    return std::make_tuple(need_left, left_shifts.data(), right_shifts.data(), _multipliers.data());
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::prepare_indirect_buffer()
{
    const TypeInput *A_ptr          = reinterpret_cast<TypeInput *>(_a->buffer());
    const int        multis         = 1;
    const int        batches        = _a->info()->tensor_shape().total_size_upper(3);
    const size_t     stride_A       = _a->info()->strides_in_bytes().y() / sizeof(TypeInput);
    const size_t     batch_stride_A = _a->info()->strides_in_bytes()[3] / sizeof(TypeInput);
    const size_t     multi_stride_A = _a->info()->strides_in_bytes()[4] / sizeof(TypeInput);

    const size_t output_hw    = _cp.output_height * _cp.output_width;
    const int    batch_size   = _cp.kernel_height * _cp.kernel_width * output_hw * sizeof(TypeInput);
    const size_t batch_stride = batch_size / sizeof(TypeInput);
    const int    multi_size   = batch_size * batches;
    const size_t multi_stride = multi_size / sizeof(TypeInput);

    for(int64_t m = 0; m < multis; m++)
    {
        for(int64_t b = 0; b < batches; b++)
        {
            for(int64_t output_y = 0; output_y < _cp.output_height; output_y++)
            {
                for(int64_t output_x = 0; output_x < _cp.output_width; output_x++)
                {
                    int64_t output_xy = (output_y * _cp.output_width) + output_x;

                    for(int64_t kernel_y = 0; kernel_y < _cp.kernel_height; kernel_y++)
                    {
                        for(int64_t kernel_x = 0; kernel_x < _cp.kernel_width; kernel_x++)
                        {
                            int64_t input_x   = (output_x * _cp.output_stride_w) + kernel_x - _cp.padding_left;
                            int64_t input_y   = (output_y * _cp.output_stride_h) + kernel_y - _cp.padding_top;
                            int64_t kernel_xy = (kernel_y * _cp.kernel_width) + kernel_x;
                            int64_t input_xy  = (input_y * _cp.input_width) + input_x;

                            if(input_x < 0 || input_x >= _cp.input_width || input_y < 0 || input_y >= _cp.input_height)
                            {
                                _indirect_buf.get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] = _indirect_pad.data();
                            }
                            else
                            {
                                _indirect_buf.get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] =
                                    A_ptr + (m * multi_stride_A + b * batch_stride_A + input_xy * stride_A);
                            }
                        }
                    }
                }
            }
        }
    }
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::configure_indirect(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info)
{
    ARM_COMPUTE_ERROR_ON(!(info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect));

    float zeropad = 0.f;
    if(is_data_type_quantized(a->data_type()))
    {
        zeropad = a->quantization_info().uniform().offset;
    }

    const int64_t input_width    = static_cast<int64_t>(a->tensor_shape()[1]);
    const int64_t input_height   = static_cast<int64_t>(a->tensor_shape()[2]);
    const int64_t input_channels = static_cast<int64_t>(a->tensor_shape()[0]);
    const int64_t kernel_width   = static_cast<int64_t>(b->tensor_shape()[2]);
    const int64_t kernel_height  = static_cast<int64_t>(b->tensor_shape()[3]);
    const int64_t output_width   = static_cast<int64_t>(d->tensor_shape()[1]);
    const int64_t output_height  = static_cast<int64_t>(d->tensor_shape()[2]);

    _cp = { input_width, input_height, input_channels, kernel_width, kernel_height, output_width, output_height,
            info.ps_info.stride().first, info.ps_info.stride().second, info.padding_top, info.padding_left, zeropad
          };

    if(info.method == AsmConvMethod::Conv)
    {
        _gemm_kernel_asm->set_convolution_parameters(_cp);
    }

    if(info.method == AsmConvMethod::Indirect)
    {
        const unsigned int multis    = 1;
        const unsigned int batches   = a->tensor_shape().total_size_upper(3);
        const unsigned int kernel_hw = _cp.kernel_width * _cp.kernel_height;
        const unsigned int output_hw = _cp.output_width * _cp.output_height;

        using TypeInputPtr        = TypeInput *;
        const int    batch_size   = kernel_hw * output_hw * sizeof(TypeInputPtr);
        const size_t batch_stride = batch_size / sizeof(TypeInputPtr);
        const int    multi_size   = batch_size * batches;
        const size_t multi_stride = multi_size / sizeof(TypeInputPtr);

        _indirect_buf = std::unique_ptr<const TypeInput *, free_delete>(reinterpret_cast<const TypeInput **>(malloc(multi_size * multis)));
        _indirect_arg = std::unique_ptr<const TypeInput *const *, free_delete>(reinterpret_cast<const TypeInput *const **>(malloc(sizeof(TypeInput **) * kernel_hw * multis * batches)));
        _indirect_pad = std::vector<TypeInput>(_cp.input_channels, TypeInput(zeropad));

        // Set indirect argument
        int64_t pos = 0;
        for(int64_t m = 0; m < multis; m++)
        {
            for(int64_t b = 0; b < batches; b++)
            {
                for(int64_t kernel_xy = 0; kernel_xy < kernel_hw; kernel_xy++)
                {
                    (_indirect_arg.get())[pos++] = _indirect_buf.get() + m * multi_stride + b * batch_stride + kernel_xy * output_hw;
                }
            }
        }

        _gemm_kernel_asm->set_indirect_parameters(a->tensor_shape()[0], _indirect_arg.get());
    }
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d,
                                                             arm_gemm::GemmArgs args, const AsmGemmInfo &gemm_info,
                                                             MemoryGroup &memory_group, IWeightsManager *weights_manager, const OutputStage &os)
{
    arm_gemm::GemmConfig gemm_cfg;
    _kernel_info     = arm_gemm::get_gemm_method<TypeInput, TypeOutput, OutputStage>(args, os);
    _weights_manager = weights_manager;
    if(_kernel_info.method != arm_gemm::GemmMethod::GEMV_BATCHED)
    {
        gemm_cfg.filter = _kernel_info.name;
        args._cfg       = &gemm_cfg;
    }
    _gemm_kernel_asm = arm_gemm::gemm<TypeInput, TypeOutput, OutputStage>(args, os);
    if(_gemm_kernel_asm == nullptr)
    {
        //configuration not supported: Leave function unconfigured:
        return;
    }

    // arm_compute wrapper for the Gemm object (see above)
    std::unique_ptr<NEGEMMAssemblyWrapperKernel<TypeInput, TypeOutput>> acl_gemm_wrapper = std::make_unique<NEGEMMAssemblyWrapperKernel<TypeInput, TypeOutput>>();
    ARM_COMPUTE_ERROR_ON(acl_gemm_wrapper == nullptr);
    acl_gemm_wrapper->configure(_gemm_kernel_asm.get(), gemm_cfg.filter);
    const size_t workspace_size = _gemm_kernel_asm->get_working_size();
    if(workspace_size > 0)
    {
        // Allocate workspace
        const unsigned int alignment = 4096;
        allocate_workspace(workspace_size, memory_group, alignment);
    }

    //if we disable this code below in brackets then ConvLayer deadlocks when threads > 1 and
    //the shapes are In=1x1x1024 Weights=1x1x1024x1001 Biases=1001 Out=1x1x1001
    {
        const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
        if(window_size < static_cast<unsigned int>(args._maxthreads))
        {
            _gemm_kernel_asm->set_nthreads(window_size);
        }
    }

    _optimised_kernel = std::move(acl_gemm_wrapper);
    _a                = a;
    _b                = b;
    _c                = c;
    _d                = d;
    _gemm_info        = gemm_info;
    // Check for pre-transposed support
    if(_gemm_kernel_asm->B_pretranspose_required())
    {
        // Forcing 128-byte alignment (required by 32-bit kernels)
        const unsigned int alignment           = 128;
        const size_t       B_pretranspose_size = _gemm_kernel_asm->get_B_pretransposed_array_size();
        if(weights_manager && _weights_manager->are_weights_managed(b))
        {
            _weights_transform.configure(B_pretranspose_size, alignment);
            _pretranspose = _weights_manager->acquire(b, &_weights_transform);
        }
        else
        {
            _pretranspose = new Tensor();
            static_cast<Tensor *>(_pretranspose)->allocator()->init(TensorInfo(TensorShape{ (B_pretranspose_size + alignment /* FIXME: remove alignment after COMPMID-1088 */) }, 1, DataType::S8), alignment);
        }
    }

    // Handle indirect GEMM convolution
    if(gemm_info.method == AsmConvMethod::Conv || gemm_info.method == AsmConvMethod::Indirect)
    {
        configure_indirect(a->info(), b->info(), d->info(), gemm_info);
    }
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::prepare()
{
    if(!_is_prepared)
    {
        // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
        if(_c && _c->info()->data_type() == DataType::S32)
        {
            _gemm_kernel_asm->set_quantized_bias(reinterpret_cast<const int32_t *>(_c->buffer() + _c->info()->offset_first_element_in_bytes()), 0);
        }

        // Pretranspose B if required
        if(_gemm_kernel_asm->B_pretranspose_required())
        {
            const int  ldb            = _b->info()->strides_in_bytes().y() / sizeof(TypeInput);
            const auto in1_ptr        = reinterpret_cast<const TypeInput *>(_b->buffer() + _b->info()->offset_first_element_in_bytes());
            const int  multi_stride_b = _b->info()->strides_in_bytes().z() / sizeof(TypeInput);

            if(_weights_manager && _weights_manager->are_weights_managed(_b))
            {
                _weights_transform.set_args(ldb, in1_ptr, multi_stride_b, _gemm_kernel_asm);
                _weights_manager->run(_b, &_weights_transform);

                // If we didn't run the reshape function, set the pretransposed buffer
                if(!_weights_transform.is_reshape_run())
                {
                    _weights_transform.set_pretranspose(_pretranspose);
                }
            }
            else
            {
                static_cast<Tensor *>(_pretranspose)->allocator()->allocate();
                ARM_COMPUTE_ERROR_ON(_pretranspose->buffer() == nullptr);
                _gemm_kernel_asm->pretranspose_B_array(_pretranspose->buffer(), in1_ptr, ldb, multi_stride_b);
                _b->mark_as_unused();
            }
        }

        if(_gemm_info.method == AsmConvMethod::Indirect)
        {
            prepare_indirect_buffer();
        }

        _is_prepared = true;
    }
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment)
{
    ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "size cannot be 0");
    _workspace.allocator()->init(TensorInfo(TensorShape{ (workspace_size + alignment /* FIXME: remove alignment after COMPMID-1088 */) }, 1, DataType::S8), alignment);
    memory_group.manage(&_workspace);
    _workspace.allocator()->allocate();
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
bool Fallback<TypeInput, TypeOutput, OutputStage>::is_configured() const
{
    return _optimised_kernel != nullptr;
}

template <typename TypeInput, typename TypeOutput, class OutputStage>
void Fallback<TypeInput, TypeOutput, OutputStage>::run()
{
    int       lda = _a->info()->strides_in_bytes().y() / sizeof(TypeInput);
    int       ldb = 0;
    const int ldd = _d->info()->strides_in_bytes().y() / sizeof(TypeOutput);

    const size_t a_batch_idx = _gemm_info.reinterpret_input_as_3d != 0 ? 3 : 2;
    const size_t a_multi_idx = a_batch_idx + 1;
    const size_t d_batch_idx = _gemm_info.depth_output_gemm3d != 0 ? 3 : 2;
    const size_t d_multi_idx = d_batch_idx + 1;

    int       batch_stride_a = _a->info()->strides_in_bytes()[a_batch_idx] / sizeof(TypeInput);
    const int batch_stride_d = _d->info()->strides_in_bytes()[d_batch_idx] / sizeof(TypeOutput);

    int       multi_stride_a = _a->info()->strides_in_bytes()[a_multi_idx] / sizeof(TypeInput);
    int       multi_stride_b = 0;
    const int multi_stride_d = _d->info()->strides_in_bytes()[d_multi_idx] / sizeof(TypeOutput);

    auto             in0_ptr = reinterpret_cast<const TypeInput *>(_a->buffer() + _a->info()->offset_first_element_in_bytes());
    const TypeInput *in1_ptr = nullptr;
    auto             out_ptr = reinterpret_cast<TypeOutput *>(_d->buffer() + _d->info()->offset_first_element_in_bytes());

    // Check if B is pre-tranposed and de-reference if not
    if(!_gemm_kernel_asm->B_is_pretransposed())
    {
        ldb            = _b->info()->strides_in_bytes().y() / sizeof(TypeInput);
        multi_stride_b = _b->info()->strides_in_bytes().z() / sizeof(TypeInput);
        in1_ptr        = reinterpret_cast<const TypeInput *>(_b->buffer() + _b->info()->offset_first_element_in_bytes());
    }

    const auto scheduling_hint = scheduling_hint_heuristic(_kernel_info.method, _d->info()->data_type());

    // Set workspace if needed and reset number of threads as buffer manager gets re-created with max_threads
    if(_workspace.buffer() != nullptr)
    {
        _gemm_kernel_asm->set_working_space(reinterpret_cast<void *>(_workspace.buffer()));
        const unsigned int split_dim   = scheduling_hint.split_dimension();
        const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
        unsigned int       num_threads = NEScheduler::get().num_threads();
        if(window_size < num_threads)
        {
            num_threads = window_size;
        }
        if(split_dim != IScheduler::split_dimensions_all)
        {
            // Make sure the kernel does not expect more threads than we can actually spawn
            const unsigned int num_iterations = _optimised_kernel.get()->window().num_iterations(split_dim);
            num_threads                       = std::min(num_iterations, num_threads);
        }
        _gemm_kernel_asm->set_nthreads(num_threads);
    }

    // Prepare assembly kernel
    prepare();

    // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
    TypeOutput *bias = nullptr;
    if(_c && _c->info()->data_type() != DataType::S32)
    {
        bias = reinterpret_cast<TypeOutput *>(_c->buffer() + _c->info()->offset_first_element_in_bytes());
    }

    if(_gemm_info.method == AsmConvMethod::Indirect)
    {
        in0_ptr        = nullptr;
        lda            = 0;
        batch_stride_a = 0;
        multi_stride_a = 0;
    }

    // Set gemm parameters
    _gemm_kernel_asm->set_arrays(in0_ptr, lda, batch_stride_a, multi_stride_a,
                                 in1_ptr, ldb, multi_stride_b,
                                 out_ptr, ldd, batch_stride_d, multi_stride_d,
                                 bias, 0);
    // Schedule
    NEScheduler::get().schedule(_optimised_kernel.get(), scheduling_hint);
}

template <typename TypeInput, typename TypeOutput>
void create_arm_gemm(std::unique_ptr<NEGEMMAssemblyDispatch::IFallback> &arm_gemm, MemoryGroup &memory_group,
                     const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, arm_gemm::Activation activation, const AsmGemmInfo &info,
                     IWeightsManager *weights_manager)
{
    Params         p           = extract_parameters(a, b, d, info);
    const CPUInfo &ci          = NEScheduler::get().cpu_info();
    unsigned int   num_threads = NEScheduler::get().num_threads();

    arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads);

    // Create arm_gemm fallback
    auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput>>();
    fallback->configure(a, b, c, d, args, info, memory_group, weights_manager);
    arm_gemm = std::move(fallback);
}

template <typename TypeInput, typename TypeOutput>
void create_arm_gemm_quant(std::unique_ptr<NEGEMMAssemblyDispatch::IFallback> &arm_gemm, MemoryGroup &memory_group,
                           const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, arm_gemm::Activation activation, const AsmGemmInfo &info,
                           IWeightsManager *weights_manager)
{
    ARM_COMPUTE_UNUSED(activation);
    Params         p           = extract_parameters(a, b, d, info);
    const CPUInfo &ci          = NEScheduler::get().cpu_info();
    unsigned int   num_threads = NEScheduler::get().num_threads();

    arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads);

    // Create arm_gemm fallback
    auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput, arm_gemm::Requantize32>>();

    // Configure requantization info
    const int32_t                 negation = info.negated_offsets ? 1 : -1;
    const int32_t                 a_offset = -a->info()->quantization_info().uniform().offset * negation;
    const int32_t                 b_offset = -b->info()->quantization_info().uniform().offset * negation;
    const GEMMLowpOutputStageInfo os_info  = info.output_stage;

    arm_gemm::Requantize32 gemm_requant_info{};
    if(os_info.gemmlowp_shifts.size() > 1)
    {
        const auto requantize_data = fallback->set_requantize_data(os_info.gemmlowp_shifts, os_info.gemmlowp_multipliers);
        gemm_requant_info          = arm_gemm::Requantize32(nullptr, 0,
                                                            a_offset, b_offset, os_info.gemmlowp_offset,
                                                            (std::get<0>(requantize_data)) ? std::get<1>(requantize_data) : nullptr,
                                                            std::get<2>(requantize_data),
                                                            std::get<3>(requantize_data),
                                                            os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
    }
    else
    {
        gemm_requant_info = arm_gemm::Requantize32(nullptr, 0,
                                                   a_offset, b_offset, os_info.gemmlowp_offset,
                                                   -os_info.gemmlowp_shift, os_info.gemmlowp_multiplier,
                                                   os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
    }

    // Configure fallback
    fallback->configure(a, b, c, d, args, info, memory_group, weights_manager, gemm_requant_info);
    arm_gemm = std::move(fallback);
}

} //namespace

NEGEMMAssemblyDispatch::NEGEMMAssemblyDispatch(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
    : _arm_gemm(nullptr), _memory_group(std::move(memory_manager)), _weights_manager(weights_manager)
{
}

Status NEGEMMAssemblyDispatch::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, const AsmGemmInfo &info)
{
    ARM_COMPUTE_UNUSED(c, info);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(a, b, d);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);

#ifndef __aarch64__
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->element_size() == 1, "8bit integer types only supported for aarch64");
#endif /* __aarch64__ */
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8,
                                                         DataType::BFLOAT16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::S8,
                                                         DataType::BFLOAT16, DataType::F16, DataType::F32);
    if(is_data_type_quantized_per_channel(b->data_type()))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8_SIGNED, DataType::S8);
    }
    else
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
    }
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F32 && d->data_type() != DataType::F32, "Only F32 output supported for F32 input");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F16 && d->data_type() != DataType::F16, "Only F16 output supported for F16 input");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::BFLOAT16 && d->data_type() != DataType::F32, "Only F32 output supported for BFLOAT16 input");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::U8 && d->data_type() != DataType::U32, "Only U32 output supported for U8 input");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::S8 && d->data_type() != DataType::S32, "Only S32 output supported for S8 input");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::QASYMM8 && d->data_type() != DataType::QASYMM8, "Only QASYMM8 output supported for QASYMM8 input");
    return Status{};
}

bool NEGEMMAssemblyDispatch::is_activation_supported(const ActivationLayerInfo &activation)
{
    arm_gemm::Activation act = map_to_arm_gemm_activation(activation);
    return act.type != arm_gemm::Activation::Type::None;
}

void NEGEMMAssemblyDispatch::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, const AsmGemmInfo &info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
    arm_gemm::Activation act = map_to_arm_gemm_activation(info.activation_info);

    //If we don't support a combination of data types, silently return: it is the caller's responsibility to check if configure() was successful via is_configured()
    if(!NEGEMMAssemblyDispatch::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, d->info(), info))
    {
        return;
    }

    switch(a->info()->data_type())
    {
        case DataType::F32:
            create_arm_gemm<float, float>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            break;
#ifdef __aarch64__
        case DataType::U8:
        case DataType::QASYMM8:
            if(d->info()->data_type() == DataType::S32)
            {
                create_arm_gemm<uint8_t, uint32_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            }
            else
            {
                create_arm_gemm_quant<uint8_t, uint8_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            }
            break;
        case DataType::S8:
        case DataType::QASYMM8_SIGNED:
            if(d->info()->data_type() == DataType::S32)
            {
                create_arm_gemm<int8_t, int32_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            }
            else
            {
                create_arm_gemm_quant<int8_t, int8_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            }
            break;
#endif /* __aarch64__ */
#if defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16)
        case DataType::BFLOAT16:
            create_arm_gemm<bfloat16, float>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            break;
#endif /* defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16) */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            create_arm_gemm<float16_t, float16_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
            break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        default:
            break;
    }
}

void NEGEMMAssemblyDispatch::prepare()
{
    ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
    _arm_gemm->prepare();
}

bool NEGEMMAssemblyDispatch::is_configured() const
{
    return _arm_gemm != nullptr && _arm_gemm->is_configured();
}

void NEGEMMAssemblyDispatch::run()
{
    MemoryGroupResourceScope scope_mg(_memory_group);

    ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
    _arm_gemm->run();
}
} //namespace arm_compute