aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/NEON/functions/NEDeconvolutionLayer.cpp
blob: dd53fbbdc3d667f68d3b47a5a61c43cd1bf44fe2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"

using namespace arm_compute::misc::shape_calculator;

namespace arm_compute
{
namespace
{
PadStrideInfo compute_upsample_info(const PadStrideInfo &info, uint32_t deconv_pad_x, uint32_t deconv_pad_y)
{
    const unsigned int pad_left   = info.pad_left();
    const unsigned int pad_right  = info.pad_right();
    const unsigned int pad_top    = info.pad_top();
    const unsigned int pad_bottom = info.pad_bottom();
    const unsigned int stride_x   = info.stride().first;
    const unsigned int stride_y   = info.stride().second;

    // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
    unsigned int deconv_pad_left  = pad_right > pad_left ? pad_right - pad_left : 0;
    unsigned int deconv_pad_right = pad_left > pad_right ? pad_left - pad_right : 0;
    deconv_pad_x -= deconv_pad_left + deconv_pad_right;
    ARM_COMPUTE_ERROR_ON((deconv_pad_x % 2) != 0);
    deconv_pad_left += deconv_pad_x / 2;
    deconv_pad_right += deconv_pad_x / 2;

    unsigned int deconv_pad_top    = pad_bottom > pad_top ? pad_bottom - pad_top : 0;
    unsigned int deconv_pad_bottom = pad_top > pad_bottom ? pad_top - pad_bottom : 0;
    deconv_pad_y -= deconv_pad_top + deconv_pad_bottom;
    ARM_COMPUTE_ERROR_ON((deconv_pad_y % 2) != 0);
    deconv_pad_top += deconv_pad_y / 2;
    deconv_pad_bottom += deconv_pad_y / 2;

    return PadStrideInfo(stride_x, stride_y, deconv_pad_left, deconv_pad_right, deconv_pad_top, deconv_pad_bottom, DimensionRoundingType::FLOOR);
}

} // namespace

NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
    : _memory_group(std::move(memory_manager)),
      _conv_f(),
      _upsample_f(),
      _flip_weights(),
      _scaled_output(),
      _weights_flipped(),
      _flip_axis(),
      _original_weights(nullptr),
      _input(nullptr),
      _info(),
      _is_prepared(false)
{
}

Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, input);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(weights, input);
    const unsigned int width_idx  = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::WIDTH);
    const unsigned int height_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::HEIGHT);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) < 1);

    auto out_dims = deconvolution_output_dimensions(input->dimension(width_idx), input->dimension(height_idx), weights->dimension(width_idx), weights->dimension(height_idx), info);

    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
    if(bias != nullptr)
    {
        if(is_data_type_quantized_asymmetric(input->data_type()))
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
        }
    }

    if(output->tensor_shape().total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);

        const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);

        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid.");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid.");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid.");
    }

    uint32_t            deconv_pad_x    = 0;
    uint32_t            deconv_pad_y    = 0;
    const unsigned int  stride_x        = info.stride().first;
    const unsigned int  stride_y        = info.stride().second;
    const TensorShape   scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
    TensorInfo          scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape));
    const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);

    const unsigned int batches_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
    const unsigned int channel_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL);
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(batches_idx) != scale_out_info.dimension(batches_idx));
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(channel_idx) != scale_out_info.dimension(channel_idx));

    ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, WeightsInfo()));

    return Status{};
}

void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info)
{
    // Perform validation step
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
    ARM_COMPUTE_ERROR_THROW_ON(NEDeconvolutionLayer::validate(input->info(), weights->info(), (bias == nullptr) ? nullptr : bias->info(), output->info(), info));

    const DataLayout   data_layout = input->info()->data_layout();
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    auto               out_dims    = deconvolution_output_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx),
                                                                     weights->info()->dimension(width_idx), weights->info()->dimension(height_idx), info);

    const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());

    _input            = input;
    _original_weights = weights;
    _info             = info;
    _is_prepared      = false;

    const unsigned int stride_x = info.stride().first;
    const unsigned int stride_y = info.stride().second;

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());

    _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
    _memory_group.manage(&_scaled_output);

    _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
    _flip_weights.configure(weights, &_weights_flipped, &_flip_axis);

    // setup the function to convolve the upscaled output
    const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
    uint32_t            deconv_pad_x = 0;
    uint32_t            deconv_pad_y = 0;

    const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(),
                                                                              stride_x, stride_y,
                                                                              out_dims, deconv_pad_x, deconv_pad_y);

    const PadStrideInfo upsample_info = compute_upsample_info(info, deconv_pad_x, deconv_pad_y);

    TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
    scale_out_info.set_data_layout(data_layout);
    _scaled_output.allocator()->init(scale_out_info);

    _upsample_f.configure(input, &_scaled_output, upsample_info);

    _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info);

    // Setup flip axis data
    _flip_axis.allocator()->allocate();
    auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
    axis_data[0]   = static_cast<uint32_t>(width_idx);
    axis_data[1]   = static_cast<uint32_t>(height_idx);

    _scaled_output.allocator()->allocate();
}

void NEDeconvolutionLayer::run()
{
    prepare();

    MemoryGroupResourceScope scope_mg(_memory_group);

    _upsample_f.run();
    _conv_f.run();
}

void NEDeconvolutionLayer::prepare()
{
    if(!_is_prepared)
    {
        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());

        // Run weights flipping and mark original weights tensor as unused
        _weights_flipped.allocator()->allocate();
        _flip_weights.run();
        _original_weights->mark_as_unused();

        // Prepare convolution
        _conv_f.prepare();

        _is_prepared = true;
    }
}
} // namespace arm_compute