aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/IScheduler.cpp
blob: ecf84abd2c48e3f6733e3da299a272eb0e70e53a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
 * Copyright (c) 2016-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/IScheduler.h"

#include "arm_compute/core/CPP/ICPPKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Log.h"
#include "arm_compute/core/Window.h"

#include "src/common/cpuinfo/CpuInfo.h"
#include "src/runtime/SchedulerUtils.h"

namespace arm_compute
{
IScheduler::IScheduler()
{
    // Work out the best possible number of execution threads
    _num_threads_hint = cpuinfo::num_threads_hint();
}

CPUInfo &IScheduler::cpu_info()
{
    return CPUInfo::get();
}

void IScheduler::set_num_threads_with_affinity(unsigned int num_threads, BindFunc func)
{
    ARM_COMPUTE_UNUSED(num_threads, func);
    ARM_COMPUTE_ERROR("Feature for affinity setting is not implemented");
}

unsigned int IScheduler::num_threads_hint() const
{
    return _num_threads_hint;
}

void IScheduler::schedule_common(ICPPKernel *kernel, const Hints &hints, const Window &window, ITensorPack &tensors)
{
    ARM_COMPUTE_ERROR_ON_MSG(!kernel, "The child class didn't set the kernel");
#ifndef BARE_METAL
    const Window &max_window = window;
    if (hints.split_dimension() == IScheduler::split_dimensions_all)
    {
        /*
         * if the split dim is size_t max then this signals we should parallelise over
         * all dimensions
         */
        const std::size_t m = max_window.num_iterations(Window::DimX);
        const std::size_t n = max_window.num_iterations(Window::DimY);

        //in c++17 this can be swapped for   auto [ m_threads, n_threads ] = split_2d(...
        unsigned m_threads, n_threads;
        std::tie(m_threads, n_threads) = scheduler_utils::split_2d(this->num_threads(), m, n);

        std::vector<IScheduler::Workload> workloads;
        for (unsigned int ni = 0; ni != n_threads; ++ni)
        {
            for (unsigned int mi = 0; mi != m_threads; ++mi)
            {
                workloads.push_back(
                    [ni, mi, m_threads, n_threads, &max_window, &kernel](const ThreadInfo &info)
                    {
                        //narrow the window to our mi-ni workload
                        Window win = max_window.split_window(Window::DimX, mi, m_threads)
                                         .split_window(Window::DimY, ni, n_threads);

                        win.validate();

                        Window thread_locator;
                        thread_locator.set(Window::DimX, Window::Dimension(mi, m_threads));
                        thread_locator.set(Window::DimY, Window::Dimension(ni, n_threads));

                        thread_locator.validate();

                        kernel->run_nd(win, info, thread_locator);
                    });
            }
        }
        run_workloads(workloads);
    }
    else
    {
        const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension());
        const unsigned int num_threads    = std::min(num_iterations, this->num_threads());

        if (num_iterations == 0)
        {
            return;
        }

        if (!kernel->is_parallelisable() || num_threads == 1)
        {
            ThreadInfo info;
            info.cpu_info = &cpu_info();
            if (tensors.empty())
            {
                kernel->run(max_window, info);
            }
            else
            {
                kernel->run_op(tensors, max_window, info);
            }
        }
        else
        {
            unsigned int num_windows = 0;
            switch (hints.strategy())
            {
                case StrategyHint::STATIC:
                    num_windows = num_threads;
                    break;
                case StrategyHint::DYNAMIC:
                {
                    const unsigned int granule_threshold =
                        (hints.threshold() <= 0) ? num_threads : static_cast<unsigned int>(hints.threshold());
                    // Make sure we don't use some windows which are too small as this might create some contention on the ThreadFeeder
                    num_windows = num_iterations > granule_threshold ? granule_threshold : num_iterations;
                    break;
                }
                default:
                    ARM_COMPUTE_ERROR("Unknown strategy");
            }
            // Make sure the smallest window is larger than minimum workload size
            num_windows = adjust_num_of_windows(max_window, hints.split_dimension(), num_windows, *kernel, cpu_info());

            std::vector<IScheduler::Workload> workloads(num_windows);
            for (unsigned int t = 0; t < num_windows; ++t)
            {
                //Capture 't' by copy, all the other variables by reference:
                workloads[t] = [t, &hints, &max_window, &num_windows, &kernel, &tensors](const ThreadInfo &info)
                {
                    Window win = max_window.split_window(hints.split_dimension(), t, num_windows);
                    win.validate();

                    if (tensors.empty())
                    {
                        kernel->run(win, info);
                    }
                    else
                    {
                        kernel->run_op(tensors, win, info);
                    }
                };
            }
            run_workloads(workloads);
        }
    }
#else  /* !BARE_METAL */
    ARM_COMPUTE_UNUSED(kernel, hints, window, tensors);
#endif /* !BARE_METAL */
}

void IScheduler::run_tagged_workloads(std::vector<Workload> &workloads, const char *tag)
{
    ARM_COMPUTE_UNUSED(tag);
    run_workloads(workloads);
}

std::size_t IScheduler::adjust_num_of_windows(const Window     &window,
                                              std::size_t       split_dimension,
                                              std::size_t       init_num_windows,
                                              const ICPPKernel &kernel,
                                              const CPUInfo    &cpu_info)
{
    // Mitigation of the narrow split issue, which occurs when the split dimension is too small to split (hence "narrow").
    if (window.num_iterations(split_dimension) < init_num_windows)
    {
        auto recommended_split_dim = Window::DimX;
        for (std::size_t dims = Window::DimY; dims <= Window::DimW; ++dims)
        {
            if (window.num_iterations(recommended_split_dim) < window.num_iterations(dims))
            {
                recommended_split_dim = dims;
            }
        }
        ARM_COMPUTE_LOG_INFO_MSG_WITH_FORMAT_CORE(
            "%zu dimension is not a suitable dimension to split the workload. Recommended: %zu recommended_split_dim",
            split_dimension, recommended_split_dim);
    }

    for (auto t = init_num_windows; t > 0; --t) // Trying the highest number of windows ,init_num_windows, first
    {
        // Try splitting the workload into t, subject to each subworkload size <= mws.
        if ((window.num_iterations(split_dimension) / kernel.get_mws(cpu_info, t)) >= t)
        {
            if (t != init_num_windows)
            {
                ARM_COMPUTE_LOG_INFO_MSG_CORE(
                    "The scheduler is using a different thread count than the one assigned by the user.");
            }
            return t;
        }
    }
    ARM_COMPUTE_LOG_INFO_MSG_CORE(
        "The scheduler is using single thread instead of the thread count assigned by the user.");
    return 1; //  If the workload is so small that it can't be split, we should run a single thread
}

} // namespace arm_compute