aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/CL/functions/CLSoftmaxLayer.cpp
blob: 3a7d6c770b1a9085f1b06d0c32834f82b3641c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/runtime/CL/functions/CLSoftmaxLayer.h"

#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/ICLKernel.h"
#include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLMemoryGroup.h"
#include "arm_compute/runtime/CL/CLScheduler.h"

namespace arm_compute
{
CLSoftmaxLayer::CLSoftmaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
    : _memory_group(std::move(memory_manager)), _max_shift_exp_sum_kernel(), _norm_kernel(), _flatten_kernel(), _reshape_kernel(), _max(), _sum(), _tmp(), _input_flat(), _output_flat(),
      _needs_flattening(false)
{
}

void CLSoftmaxLayer::configure_flatten_kernel(const ICLTensor *input, const ICLTensor *output)
{
    // Flatten the input
    const TensorShape shape_flatten = misc::shape_calculator::compute_flatten_shape(input->info());

    // Initialize the flat input
    _input_flat.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));

    // Configure the flatten_kernel
    _flatten_kernel.configure(input, &_input_flat);

    // We need to init the output tensor here. Indeed, the reshape kernel expects
    // both tensors to be already initialized
    auto_init_if_empty(*output->info(), *input->info()->clone());
}

void CLSoftmaxLayer::configure(const ICLTensor *input, ICLTensor *output, float beta)
{
    // Perform validation step
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(CLSoftmaxLayer::validate(input->info(), output->info()));

    _needs_flattening = input->info()->num_dimensions() > 2;

    // If we are dealing with a 4D tensor, we will:
    // - Flatten the input, so that we end up with a [width*height*depth] * batches 2D tensor
    // - Execute all the pipeline (reduction + normalization) on the flattened tensor
    // - Reshape the flattened output into the real output
    if(_needs_flattening)
    {
        // Add to the memory manager _input_flat
        _memory_group.manage(&_input_flat);

        // Cofigure  _flatten_kernel and _input_flat
        configure_flatten_kernel(input, output);
    }

    // We want to deal with a 2D input. Either it is the flattened version of the original input (4D case)
    // or it is the original input case (2D case)
    const ICLTensor *input_2D = (_needs_flattening ? &_input_flat : input);

    // Create intermediate tensors shapes
    TensorInfo input_info    = input_2D->info()->clone()->reset_padding().set_is_resizable(true);
    DataType   tmp_data_type = is_data_type_quantized_asymmetric(input_2D->info()->data_type()) ? DataType::S32 : input_2D->info()->data_type();
    TensorInfo tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
    _tmp.allocator()->init(tensor_info_tmp);

    TensorShape max_sum_shape = input_2D->info()->tensor_shape();
    max_sum_shape.set(0, 1);
    _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
    _sum.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type));

    // Set GPU target to kernels
    _max_shift_exp_sum_kernel.set_target(CLScheduler::get().target());

    // Manage intermediate buffers
    _memory_group.manage(&_tmp);
    _memory_group.manage(&_max);
    _memory_group.manage(&_sum);

    // Configure kernels
    _max_shift_exp_sum_kernel.configure(input_2D, &_max, &_tmp, &_sum, beta);

    if(_needs_flattening)
    {
        // Add to the memory manager _output_flat
        _memory_group.manage(&_output_flat);

        // The normalization kernel stores the result in a flat output tensor
        _norm_kernel.configure(&_tmp, &_sum, &_output_flat, beta);

        // Reshape the flat output into a the requested (4D) output
        _reshape_kernel.configure(&_output_flat, output);

        // Allocate the intermediate flat tensors
        _input_flat.allocator()->allocate();
        _output_flat.allocator()->allocate();
    }
    else
    {
        // Softmax 2D case
        _norm_kernel.configure(&_tmp, &_sum, output, beta);
    }

    // Allocate intermediate buffers
    _tmp.allocator()->allocate();
    _max.allocator()->allocate();
    _sum.allocator()->allocate();
}

Status CLSoftmaxLayer::validate(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() > 4, "Only up to 4 dimensions are supported");

    // Create intermediate tensor info
    DataType   tmp_data_type = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type();
    TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type).set_is_resizable(true));

    TensorShape max_sum_shape = input->tensor_shape();
    max_sum_shape.set(0, 1);
    TensorInfo tensor_info_max(input->clone()->set_tensor_shape(max_sum_shape).set_is_resizable(true));
    TensorInfo tensor_info_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(QuantizationInfo()).set_is_resizable(true));

    const TensorShape shape_flatten = misc::shape_calculator::compute_flatten_shape(input);
    TensorInfo        tensor_info_flat(input->clone()->set_tensor_shape(shape_flatten).set_is_resizable(true));

    if(input->num_dimensions() > 2) // needs flattening
    {
        ARM_COMPUTE_RETURN_ON_ERROR(CLFlattenLayerKernel::validate(input, &tensor_info_flat));
    }

    ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum));
    ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DNormKernel::validate(&tensor_info_tmp, &tensor_info_sum, output));

    return Status{};
}

void CLSoftmaxLayer::run()
{
    _memory_group.acquire();
    if(_needs_flattening)
    {
        CLScheduler::get().enqueue(_flatten_kernel, false);
    }

    CLScheduler::get().enqueue(_max_shift_exp_sum_kernel, false);
    CLScheduler::get().enqueue(_norm_kernel, !_needs_flattening);

    if(_needs_flattening)
    {
        CLScheduler::get().enqueue(_reshape_kernel, true);
    }

    // Relase intermediate buffers
    _memory_group.release();
}

} // namespace arm_compute