aboutsummaryrefslogtreecommitdiff
path: root/src/graph/mutators/NodeFusionMutator.cpp
blob: 78f275f3bb7f7e671f76f8af894851ddf4b23f45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * Copyright (c) 2018-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/graph/mutators/NodeFusionMutator.h"

#include "arm_compute/graph/GraphBuilder.h"
#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/backends/BackendRegistry.h"
#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationNode.h"
#include "arm_compute/graph/nodes/FusedConvolutionWithPostOpNode.h"
#include "arm_compute/graph/nodes/Nodes.h"

#include "src/graph/mutators/MutatorUtils.h"

#include "support/Cast.h"

#include <list>
#include <set>

namespace arm_compute
{
namespace graph
{
namespace detail
{
void transfer_driving_nodes_and_remove_old_node(Graph &g, INode *new_node, INode *old_node, bool add_output_tensor)
{
    if(new_node == nullptr || old_node == nullptr)
    {
        return;
    }

    // Get driving nodes of last fusable node
    std::vector<NodeIdxPair> last_driving_nodes = get_driving_nodes(*old_node);

    // Extract last fusable node accessor if any
    if(old_node->output(0) == nullptr)
    {
        return;
    }
    auto old_node_accessor = old_node->output(0)->extract_accessor();

    // Remove node
    g.remove_node(old_node->id());

    // Update fused node outputs
    for(auto &driving_node : last_driving_nodes)
    {
        g.add_connection(new_node->id(), 0, driving_node.node_id, driving_node.index);
        if(add_output_tensor)
        {
            configure_tensor(new_node->output(0));
        }
    }

    // Update accessor to fused node
    new_node->output(0)->set_accessor(std::move(old_node_accessor));
}

void fuse_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);

    auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<ConvolutionLayerNode *>(output_edge->producer());
    auto *bn_node   = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());

    // Not fusing if number of groups is greater than 1
    if(conv_node->num_groups() > 1)
    {
        return;
    }

    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << output_edge->producer_id()
                                  << " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);

    // Prevent fusion if fused node has an output accessor
    if(conv_node->output(0)->accessor() == nullptr)
    {
        const Target assigned_target = conv_node->assigned_target();

        // Extract conv inputs
        const auto   conv_input_id   = conv_node->input_edge(0)->producer_id();
        const auto   conv_weights_id = conv_node->input_edge(1)->producer_id();
        const auto   conv_info       = conv_node->convolution_info();
        const auto   conv_method     = conv_node->convolution_method();
        const auto   num_groups      = conv_node->num_groups();
        const auto   act_info        = bn_node->fused_activation();
        FastMathHint fast_math_hint  = conv_node->fast_math_hint();

        // Extract bn inputs
        const auto bn_mean_id = bn_node->input_edge(1)->producer_id();
        const auto bn_var_id  = bn_node->input_edge(2)->producer_id();

        const auto epsilon = bn_node->epsilon();

        // Create the fused node
        const NodeID fused_id = g.add_node<FusedConvolutionBatchNormalizationNode>(epsilon, conv_info, num_groups, conv_method, fast_math_hint, act_info);

        if(conv_node->input_edge(2) != nullptr)
        {
            auto conv_bias_id = conv_node->input_edge(2)->producer_id();
            g.add_connection(conv_bias_id, 0, fused_id, 2);
        }

        // Add connections from the conv/batch_norm inputs to the fused node
        g.add_connection(conv_input_id, 0, fused_id, 0);
        g.add_connection(conv_weights_id, 0, fused_id, 1);
        g.add_connection(bn_mean_id, 0, fused_id, 3);
        g.add_connection(bn_var_id, 0, fused_id, 4);

        if(bn_node->input_edge(3) != nullptr)
        {
            const auto bn_beta_id = bn_node->input_edge(3)->producer_id();
            g.add_connection(bn_beta_id, 0, fused_id, 5);
        }

        if(bn_node->input_edge(4) != nullptr)
        {
            const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
            g.add_connection(bn_gamma_id, 0, fused_id, 6);
        }

        auto fused_node   = g.node(fused_id);
        auto bn_node_name = bn_node->name();

        transfer_driving_nodes_and_remove_old_node(g, fused_node, bn_node, true);

        fused_node->set_assigned_target(assigned_target);
        fused_node->set_common_node_parameters(NodeParams{ conv_node->name() + "+" + bn_node_name, assigned_target });

        // Remove convolution node
        g.remove_node(conv_node->id());
    }
    else
    {
        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution with batch normalization due to the presence of an output accessor\n");
    }
}

void fuse_depthwise_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);

    auto *depth_conv_node = arm_compute::utils::cast::polymorphic_downcast<DepthwiseConvolutionLayerNode *>(output_edge->producer());
    auto *bn_node         = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());

    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing depthwise convolution node with ID : " << output_edge->producer_id()
                                  << " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);

    // Prevent fusion if fused node has an output accessor
    if(depth_conv_node->output(0)->accessor() == nullptr)
    {
        const Target assigned_target = depth_conv_node->assigned_target();

        // Extract conv inputs
        const auto depth_conv_input_id = depth_conv_node->input_edge(0)->producer_id();
        const auto conv_weights_id     = depth_conv_node->input_edge(1)->producer_id();
        const auto conv_info           = depth_conv_node->convolution_info();
        const auto depth_conv_method   = depth_conv_node->depthwise_convolution_method();
        const auto depth_multiplier    = depth_conv_node->depth_multiplier();
        const auto act_info            = bn_node->fused_activation();

        // Extract bn inputs
        const auto bn_mean_id  = bn_node->input_edge(1)->producer_id();
        const auto bn_var_id   = bn_node->input_edge(2)->producer_id();
        const auto bn_beta_id  = bn_node->input_edge(3)->producer_id();
        const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
        const auto epsilon     = bn_node->epsilon();

        // Create the fused node
        const NodeID fused_id = g.add_node<FusedDepthwiseConvolutionBatchNormalizationNode>(epsilon, conv_info, depth_multiplier, depth_conv_method, act_info);

        if(depth_conv_node->input_edge(2) != nullptr)
        {
            const auto conv_bias_id = depth_conv_node->input_edge(2)->producer_id();
            g.add_connection(conv_bias_id, 0, fused_id, 2);
        }

        // Add connections from the conv/batch_norm inputs to the fused node
        g.add_connection(depth_conv_input_id, 0, fused_id, 0);
        g.add_connection(conv_weights_id, 0, fused_id, 1);
        g.add_connection(bn_mean_id, 0, fused_id, 3);
        g.add_connection(bn_var_id, 0, fused_id, 4);
        g.add_connection(bn_beta_id, 0, fused_id, 5);
        g.add_connection(bn_gamma_id, 0, fused_id, 6);

        auto fused_node   = g.node(fused_id);
        auto bn_node_name = bn_node->name();

        transfer_driving_nodes_and_remove_old_node(g, fused_node, bn_node, true);

        fused_node->set_assigned_target(assigned_target);
        fused_node->set_common_node_parameters(NodeParams{ depth_conv_node->name() + "+" + bn_node_name, assigned_target });

        // Remove convolution node
        g.remove_node(depth_conv_node->id());
    }
    else
    {
        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of depthwise convolution with batch normalization due to the presence of an output accessor\n");
    }
}

template <typename N>
void fuse_node_with_activation(Graph &g, const Edge *output_edge, const std::set<Activation> &supported_fused_activations)
{
    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);

    auto *n_node   = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
    auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(output_edge->consumer());

    ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr || n_node->output(0) == nullptr);

    // Check if activation is supported for fusion
    if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
    {
        return;
    }

    // EltwiseLayerNode can only be fused when dataype is float
    if(n_node->type() == NodeType::EltwiseLayer && !is_data_type_float(n_node->output(0)->desc().data_type))
    {
        return;
    }

    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing node with ID : " << output_edge->producer_id()
                                  << " with Activation Layer node with ID : " << output_edge->consumer_id() << std::endl);

    // Prevent fusion if fused node has an output accessor
    if(n_node->output(0)->accessor() == nullptr)
    {
        // Set activation info to fused node
        n_node->set_fused_activation(act_node->activation_info());

        transfer_driving_nodes_and_remove_old_node(g, n_node, act_node, false);
    }
    else
    {
        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of node with activation due to the presence of an output accessor\n");
    }
}

template <typename N>
void fuse_pad_with_convolution(Graph &g, const Edge *output_edge)
{
    auto *pad_node  = arm_compute::utils::cast::polymorphic_downcast<PadLayerNode *>(output_edge->producer());
    auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->consumer());

    const Edge *input_edge = pad_node->input_edge(0);
    if(input_edge != nullptr && input_edge->tensor() != nullptr && pad_node->output(0)->accessor() == nullptr
       && pad_node->pad_value().get<float>() == 0.0)
    {
        const DataLayout  layout       = input_edge->tensor()->desc().layout;
        const PaddingList padding_list = pad_node->padding();

        const unsigned int height_index = get_dimension_idx(layout, DataLayoutDimension::HEIGHT);
        const unsigned int width_index  = get_dimension_idx(layout, DataLayoutDimension::WIDTH);

        const PaddingInfo pad_w = width_index < padding_list.size() ? padding_list[width_index] : PaddingInfo(0, 0);
        const PaddingInfo pad_h = height_index < padding_list.size() ? padding_list[height_index] : PaddingInfo(0, 0);

        if(is_padding_in_height_or_width(layout, padding_list))
        {
            // Add paddings to the convolution node
            const PadStrideInfo conv_info = conv_node->convolution_info();
            const PadStrideInfo new_conv_info(
                conv_info.stride().first,
                conv_info.stride().second,
                conv_info.pad_left() + pad_w.first,
                conv_info.pad_right() + pad_w.second,
                conv_info.pad_top() + pad_h.first,
                conv_info.pad_bottom() + pad_h.second,
                conv_info.round());
            conv_node->set_convolution_info(new_conv_info);

            // Update drivers of the convolution node
            std::vector<NodeIdxPair> pad_driver_nodes = get_driver_nodes(*pad_node);
            g.remove_node(pad_node->id());

            // Update fused node inputs
            for(auto &driver_node : pad_driver_nodes)
            {
                g.add_connection(driver_node.node_id, driver_node.index, conv_node->id(), 0);
            }
        }
    }
}

template <typename N1, typename N2, typename F, typename... Args>
void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
{
    // Note that fused nodes may be added to the end of the node list.
    // Instead of only looping over the original list of nodes, we loop over the current node list which could be growing.
    // This is intentional as it probes the newly added fused nodes for further fusing opportunities.
    for(unsigned int i = 0; i < g.nodes().size(); ++i)
    {
        auto node = g.node(i);
        // Check if the node is of type N1 and not a branching node
        if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
        {
            const auto output_edge_id = *node->output_edges().begin();
            const auto output_edge    = g.edge(output_edge_id);

            // Check if following node is a type N2 node
            if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && (output_edge->consumer()->type() == N2::node_type) && prec(*output_edge->producer()))
            {
                fuse_fcn(g, output_edge, optional_arguments...);
            }
        }
    }
}

/** Check valid combinations:
 *
 * | Main operator | Post operators             |
 * |:--------------|:---------------------------|
 * |conv           | add                        |
 * |conv           | act + add                  |
 * |conv           | add + act                  |
 * |conv           | act + add + act            |
 *
*/
#define MAX_VALIDE_COMBINATION 4
#define MAX_POST_OP_NUM 3
NodeType valide_post_op_type[MAX_VALIDE_COMBINATION][MAX_POST_OP_NUM] = { { EltwiseLayerNode::node_type },
    { EltwiseLayerNode::node_type, ActivationLayerNode::node_type },
    { ActivationLayerNode::node_type, EltwiseLayerNode::node_type },
    { ActivationLayerNode::node_type, EltwiseLayerNode::node_type, ActivationLayerNode::node_type }
};

bool check_post_op_type(NodeType *post_op_type, int len)
{
    if(len > MAX_POST_OP_NUM || len <= 0)
    {
        return false;
    }

    bool found = false;
    for(int i = 0; i < MAX_VALIDE_COMBINATION; ++i)
    {
        for(int j = 0; j < len; ++j)
        {
            if(post_op_type[j] != valide_post_op_type[i][j])
            {
                found = false;
                break;
            }
            found = true;
        }
        if(found)
            break;
    }

    return found;
}

void fuse_convolution_with_post_op(Graph &g, INode *fused_node, std::list<INode *> post_op_node_list, int prev_op_dst_pos)
{
    unsigned int op_idx = 0;
    // Fuse post operators with conv
    for(const auto &post_op : post_op_node_list)
    {
        switch(post_op->type())
        {
            case EltwiseLayerNode::node_type:
            {
                auto *eltwise_node = arm_compute::utils::cast::polymorphic_downcast<EltwiseLayerNode *>(post_op);
                ARM_COMPUTE_ERROR_ON(eltwise_node->output(0) == nullptr);

                fused_node->post_op_info_list().push_back(std::make_unique<ConvPostOpInfoEltwiseAdd>(prev_op_dst_pos, eltwise_node->convert_policy()));
                ARM_COMPUTE_LOG_GRAPH_VERBOSE(" with Elementwise Layer node with ID : " << post_op->id());
                break;
            }
            case ActivationLayerNode::node_type:
            {
                auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(post_op);
                ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr);

                fused_node->post_op_info_list().push_back(std::make_unique<ConvPostOpInfoActivation>(act_node->activation_info()));
                ARM_COMPUTE_LOG_GRAPH_VERBOSE(" with Activation Layer node with ID : " << post_op->id());
                break;
            }
            default:
            {
                break;
            }
        }

        if(op_idx == post_op_node_list.size() - 1) // last fusable node
        {
            transfer_driving_nodes_and_remove_old_node(g, fused_node, post_op, true);
        }
        else
        {
            // Remove node
            g.remove_node(post_op->id());
        }
        op_idx++;
    }
}

std::list<INode *> get_post_op_list(Graph &g, int &eltwise_operand_id, int &prev_op_dst_pos, int conv_node_id, const std::set<Activation> &supported_fused_activations)
{
    std::list<INode *> post_op_node_list    = {};
    NodeID             prev_op_dst_id       = conv_node_id;
    NodeType           post_op_type_list[3] = { NodeType::Dummy, NodeType::Dummy, NodeType::Dummy };
    int                post_op_idx          = 0;
    for(unsigned int i = conv_node_id + 1; i < g.nodes().size(); ++i)
    {
        auto post_op_node    = g.node(i);
        bool fusable_post_op = false;
        if(post_op_node != nullptr && post_op_node->output_edges().size() > 0)
        {
            const auto post_op_output_edge_id = *post_op_node->output_edges().begin();
            const auto post_op_output_edge    = g.edge(post_op_output_edge_id);

            if(post_op_output_edge != nullptr)
            {
                switch(post_op_output_edge->producer()->type())
                {
                    case EltwiseLayerNode::node_type:
                    {
                        auto *eltwise_node = arm_compute::utils::cast::polymorphic_downcast<EltwiseLayerNode *>(post_op_output_edge->producer());
                        ARM_COMPUTE_ERROR_ON(eltwise_node->output(0) == nullptr);
                        if(eltwise_node->output(0)->accessor() == nullptr)
                        {
                            post_op_node_list.push_back(post_op_output_edge->producer());
                            fusable_post_op                  = true;
                            post_op_type_list[post_op_idx++] = eltwise_node->type();

                            // Extract elementwise inputs
                            const auto eltwise_input_id_0 = eltwise_node->input_edge(0)->producer_id();
                            const auto eltwise_input_id_1 = eltwise_node->input_edge(1)->producer_id();
                            if(eltwise_input_id_0 == prev_op_dst_id)
                            {
                                eltwise_operand_id = eltwise_input_id_1;
                                prev_op_dst_pos    = 0;
                            }
                            else if(eltwise_input_id_1 == prev_op_dst_id)
                            {
                                eltwise_operand_id = eltwise_input_id_0;
                                prev_op_dst_pos    = 1;
                            }
                        }
                        else
                        {
                            ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with elementwise due to the presence of an output accessor\n");
                        }
                        break;
                    }
                    case ActivationLayerNode::node_type:
                    {
                        auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(post_op_output_edge->producer());
                        ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr);
                        // Check if activation is supported for fusion
                        if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
                        {
                            break;
                        }
                        if(act_node->output(0)->accessor() == nullptr)
                        {
                            post_op_node_list.push_back(post_op_output_edge->producer());
                            fusable_post_op                  = true;
                            post_op_type_list[post_op_idx++] = act_node->type();
                            prev_op_dst_id                   = act_node->id();
                        }
                        else
                        {
                            ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with activation due to the presence of an output accessor\n");
                        }
                        break;
                    }
                    default:
                    {
                        break;
                    }
                }
            }

            // Check if the node is not a branching node and current node is fusable
            if(post_op_node->output_edges().size() == 1 && fusable_post_op == true && post_op_node_list.size() < 3)
            {
                continue;
            }
            else
            {
                break;
            }
        }
    }

    // Check whether it's valid post op list
    if(post_op_node_list.size() > 0)
    {
        bool fuse_with_post_op = check_post_op_type(post_op_type_list, post_op_node_list.size());
        if(!fuse_with_post_op)
        {
            post_op_node_list.clear();
        }
    }

    return post_op_node_list;
}

/** Fuse below operators:
 *
 * | Main operator | Post operators             |
 * |:--------------|:---------------------------|
 * |conv           | add                        |
 * |conv           | act + add                  |
 * |conv           | add + act                  |
 * |conv           | act + add + act            |
 *
 * Notes: currently, only GEMM supports fusion with post operator
*/
template <typename N>
void fuse_convolution(Graph &g, const Edge *output_edge, int conv_node_id, const std::set<Activation> &supported_fused_activations)
{
    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);

    auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
    ARM_COMPUTE_ERROR_ON(conv_node->output(0) == nullptr);

    const ConvolutionMethod conv_algorithm = conv_node->convolution_method();
    if(conv_algorithm != ConvolutionMethod::GEMM)
    {
        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
        return;
    }

    // Prevent fusion if fused node has an output accessor
    if(conv_node->output(0)->accessor() == nullptr)
    {
        // If data type is FP32/FP16, data layout is NHWC, and filter size if 1x1, fuse convolution with post op, as Conv1x1 always leads to GEMM.
        const Edge *input_edge = conv_node->input_edge(1);
        if(input_edge != nullptr && input_edge->tensor() != nullptr)
        {
            const DataLayout  data_layout  = input_edge->tensor()->desc().layout;
            const DataType    data_type    = input_edge->tensor()->desc().data_type;
            const TensorShape tensor_shape = input_edge->tensor()->desc().shape;
            if(data_layout != DataLayout::NHWC || is_data_type_float(data_type) == false || tensor_shape.y() != 1 || tensor_shape.z() != 1)
            {
                ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to non GEMM convolution\n");
                return;
            }
        }
        else
        {
            return;
        }

        // Get post op list
        int                eltwise_operand_id = 0;
        int                prev_op_dst_pos    = 0; // Previous operator dst's postion in current operator
        std::list<INode *> post_op_node_list  = get_post_op_list(g, eltwise_operand_id, prev_op_dst_pos, conv_node_id, supported_fused_activations);

        if(post_op_node_list.size() == 0)
        {
            return;
        }
        else // Do convolution fusion with post op if there're one(elementwise), two or more operators
        {
            const Target assigned_target = conv_node->assigned_target();

            // Extract conv inputs
            const auto   conv_input_id   = conv_node->input_edge(0)->producer_id();
            const auto   conv_weights_id = conv_node->input_edge(1)->producer_id();
            const auto   conv_info       = conv_node->convolution_info();
            const auto   conv_method     = conv_node->convolution_method();
            const auto   num_groups      = conv_node->num_groups();
            FastMathHint fast_math_hint  = conv_node->fast_math_hint();

            // Create the fused node
            const NodeID fused_id = g.add_node<FusedConvolutionWithPostOpNode>(conv_info, num_groups, conv_method, fast_math_hint);
            ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << conv_node->id());

            // Add connections from the conv inputs to the fused node
            g.add_connection(conv_input_id, 0, fused_id, 0);
            g.add_connection(conv_weights_id, 0, fused_id, 1);
            if(conv_node->input_edge(2) != nullptr)
            {
                auto conv_bias_id = conv_node->input_edge(2)->producer_id();
                g.add_connection(conv_bias_id, 0, fused_id, 2);
            }
            g.add_connection(eltwise_operand_id, 0, fused_id, 3);
            g.remove_node(conv_node->id());

            // Update fused node outputs
            auto fused_node = g.node(fused_id);
            fused_node->set_assigned_target(assigned_target);

            // Fuse convolution with post op
            fuse_convolution_with_post_op(g, fused_node, post_op_node_list, prev_op_dst_pos);

            post_op_node_list.clear();
            ARM_COMPUTE_LOG_GRAPH_VERBOSE(std::endl);
        }
    }
    else
    {
        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution node with post ops due to the presence of an output accessor\n");
    }
}

template <typename N1, typename F, typename... Args>
void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
{
    // Note that fused nodes may be added to the end of the node list.
    // Instead of only looping over the original list of nodes, we loop over the current node list which could be growing.
    // This is intentional as it probes the newly added fused nodes for further fusing opportunities.
    for(unsigned int i = 0; i < g.nodes().size(); ++i)
    {
        auto node = g.node(i);
        // Check if the node is of type N1 and not a branching node
        if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
        {
            const auto output_edge_id = *node->output_edges().begin();
            const auto output_edge    = g.edge(output_edge_id);

            // Check if it's the correct target
            if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && prec(*output_edge->producer()))
            {
                fuse_fcn(g, output_edge, i, optional_arguments...);
            }
        }
    }
}
} // namespace detail

const char *NodeFusionMutator::name()
{
    return "NodeFusionMutator";
}

IGraphMutator::MutationType NodeFusionMutator::type() const
{
    return IGraphMutator::MutationType::Backend;
}

void NodeFusionMutator::mutate(Graph &g)
{
    // Supported activations when fusing
    const std::set<Activation> supported_fused_activations = { Activation::ABS, Activation::BOUNDED_RELU, Activation::ELU,
                                                               Activation::HARD_SWISH, Activation::IDENTITY, Activation::LEAKY_RELU,
                                                               Activation::LINEAR, Activation::LOGISTIC, Activation::LU_BOUNDED_RELU,
                                                               Activation::RELU, Activation::SOFT_RELU, Activation::SQRT,
                                                               Activation::SQUARE, Activation::TANH
                                                             };

    // Preconditions
    auto empty_prec = [](INode &)
    {
        return true;
    };
    auto cl_target_prec = [](INode & n)
    {
        return n.assigned_target() == Target::CL;
    };
    auto qs8_prec = [&g](INode & n)
    {
        ARM_COMPUTE_ERROR_ON(n.output(0) == nullptr);

        const auto output_edge_id = *n.output_edges().begin();
        const auto output_edge    = g.edge(output_edge_id);
        // To perform fusion the two nodes must have same output quantization information
        const bool same_qinfo     = n.output(0)->desc().quant_info == output_edge->producer()->output(0)->desc().quant_info;
        const bool output_qasymm8 = n.output(0)->desc().data_type == DataType::QASYMM8;

        return (output_qasymm8 && same_qinfo) || !output_qasymm8;
    };

    // Fusion mutations

    detail::fuse_layer<PadLayerNode, ConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<ConvolutionLayerNode>);
    detail::fuse_layer<PadLayerNode, DepthwiseConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<DepthwiseConvolutionLayerNode>);
    // The fusion of PostOps to ConvolutionLayer:
    // It must occur after the fusion of PadLayer into ConvolutionLayer
    // It must occur before the fusion of normal ActivationLayer into ConvolutionLayer as it takes precedence
    detail::fuse_layer<ConvolutionLayerNode>(g, cl_target_prec, detail::fuse_convolution<ConvolutionLayerNode>, supported_fused_activations);
    detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations);
    detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations);
    detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations);
    detail::fuse_layer<FullyConnectedLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<FullyConnectedLayerNode>, supported_fused_activations);
    detail::fuse_layer<EltwiseLayerNode, ActivationLayerNode>(g, cl_target_prec, detail::fuse_node_with_activation<EltwiseLayerNode>, supported_fused_activations);
    // The fusion of BatchNormalizationLayer must occur after the fusion of ActivationLayer. Because FusedConvolutionBatchNormalizationNode assumes the BatchNormalization is already fused with activation, if any
    detail::fuse_layer<ConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_convolution_with_batch_normalization);
    detail::fuse_layer<DepthwiseConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_depthwise_convolution_with_batch_normalization);
}
} // namespace graph
} // namespace arm_compute