aboutsummaryrefslogtreecommitdiff
path: root/src/graph/detail/ExecutionHelpers.cpp
blob: d5752a9f95e8d889b38881ca20bfa5bb4c2db701 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/*
 * Copyright (c) 2018-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/graph/detail/ExecutionHelpers.h"

#include "arm_compute/graph/Graph.h"
#include "arm_compute/graph/GraphContext.h"
#include "arm_compute/graph/GraphManager.h"
#include "arm_compute/graph/Tensor.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/backends/BackendRegistry.h"

namespace arm_compute
{
namespace graph
{
namespace detail
{
void validate_all_nodes(Graph &g)
{
    auto &nodes = g.nodes();

    // Create tasks
    for(auto &node : nodes)
    {
        if(node != nullptr)
        {
            Target                    assigned_target = node->assigned_target();
            backends::IDeviceBackend &backend         = backends::BackendRegistry::get().get_backend(assigned_target);
            Status                    status          = backend.validate_node(*node);
            ARM_COMPUTE_ERROR_ON_MSG(!bool(status), status.error_description().c_str());
        }
    }
}

void configure_all_tensors(Graph &g)
{
    auto &tensors = g.tensors();

    for(auto &tensor : tensors)
    {
        if(tensor && tensor->handle() == nullptr)
        {
            Target                         target  = tensor->desc().target;
            backends::IDeviceBackend      &backend = backends::BackendRegistry::get().get_backend(target);
            std::unique_ptr<ITensorHandle> handle  = backend.create_tensor(*tensor);
            ARM_COMPUTE_ERROR_ON_MSG(!handle, "Couldn't create backend handle!");
            tensor->set_handle(std::move(handle));
        }
    }
}

void allocate_all_input_tensors(INode &node)
{
    for(unsigned int i = 0; i < node.num_inputs(); ++i)
    {
        Tensor *tensor = node.input(i);
        if(tensor != nullptr && !tensor->bound_edges().empty())
        {
            ARM_COMPUTE_ERROR_ON_MSG(!tensor->handle(), "Tensor handle is not configured!");
            tensor->handle()->allocate();
        }
    }
}

void allocate_all_output_tensors(INode &node)
{
    for(unsigned int i = 0; i < node.num_outputs(); ++i)
    {
        Tensor *tensor = node.output(i);
        if(tensor != nullptr && !tensor->bound_edges().empty())
        {
            ARM_COMPUTE_ERROR_ON_MSG(!tensor->handle(), "Tensor handle is not configured!");
            tensor->handle()->allocate();
        }
    }
}

void allocate_const_tensors(Graph &g)
{
    for(auto &node : g.nodes())
    {
        if(node != nullptr)
        {
            switch(node->type())
            {
                case NodeType::Const:
                case NodeType::Input:
                    allocate_all_output_tensors(*node);
                    break;
                case NodeType::Output:
                    allocate_all_input_tensors(*node);
                default:
                    break;
            }
        }
    }
}

void allocate_all_tensors(Graph &g)
{
    auto &tensors = g.tensors();

    for(auto &tensor : tensors)
    {
        if(tensor && !tensor->bound_edges().empty() && tensor->handle() != nullptr && tensor->handle()->tensor().info()->is_resizable() && tensor->handle()->tensor().is_used())
        {
            tensor->handle()->allocate();
        }
    }
}

ExecutionWorkload configure_all_nodes(Graph &g, GraphContext &ctx, const std::vector<NodeID> &node_order)
{
    ExecutionWorkload workload;
    workload.graph = &g;
    workload.ctx   = &ctx;

    // Reserve memory for tasks
    workload.tasks.reserve(node_order.size());

    // Create tasks
    for(auto &node_id : node_order)
    {
        auto node = g.node(node_id);
        if(node != nullptr)
        {
            Target                     assigned_target = node->assigned_target();
            backends::IDeviceBackend &backend         = backends::BackendRegistry::get().get_backend(assigned_target);
            std::unique_ptr<IFunction> func            = backend.configure_node(*node, ctx);
            if(func != nullptr || is_utility_node(node))
            {
                workload.tasks.emplace_back(ExecutionTask(std::move(func), node));
            }
        }
    }

    // Add inputs and outputs
    for(auto &node : g.nodes())
    {
        if(node != nullptr && node->type() == NodeType::Input)
        {
            workload.inputs.push_back(node->output(0));
        }

        if(node != nullptr && node->type() == NodeType::Output)
        {
            workload.outputs.push_back(node->input(0));
            continue;
        }
    }

    return workload;
}

void release_unused_tensors(Graph &g)
{
    for(auto &tensor : g.tensors())
    {
        if(tensor != nullptr && tensor->handle() != nullptr)
        {
            tensor->handle()->release_if_unused();
        }
    }
}

void call_tensor_accessor(Tensor *tensor)
{
    ARM_COMPUTE_ERROR_ON(!tensor);
    tensor->call_accessor();
}

void call_all_const_node_accessors(Graph &g)
{
    auto &nodes = g.nodes();

    for(auto &node : nodes)
    {
        if(node != nullptr && node->type() == NodeType::Const)
        {
            call_tensor_accessor(node->output(0));
        }
    }
}

bool call_all_input_node_accessors(ExecutionWorkload &workload)
{
    bool is_valid = true;
    std::for_each(std::begin(workload.inputs), std::end(workload.inputs), [&](Tensor * input_tensor)
    {
        bool valid_input = (input_tensor != nullptr) && input_tensor->call_accessor();
        is_valid         = is_valid && valid_input;
    });
    return is_valid;
}

void prepare_all_tasks(ExecutionWorkload &workload)
{
    ARM_COMPUTE_ERROR_ON(workload.graph == nullptr);
    for(auto &task : workload.tasks)
    {
        task.prepare();
        release_unused_tensors(*workload.graph);
    }
}

void call_all_tasks(ExecutionWorkload &workload)
{
    ARM_COMPUTE_ERROR_ON(workload.ctx == nullptr);

    // Acquire memory for the transition buffers
    for(auto &mm_ctx : workload.ctx->memory_managers())
    {
        if(mm_ctx.second.cross_group != nullptr)
        {
            mm_ctx.second.cross_group->acquire();
        }
    }

    // Execute tasks
    for(auto &task : workload.tasks)
    {
        task();
    }

    // Release memory for the transition buffers
    for(auto &mm_ctx : workload.ctx->memory_managers())
    {
        if(mm_ctx.second.cross_group != nullptr)
        {
            mm_ctx.second.cross_group->release();
        }
    }
}

bool call_all_output_node_accessors(ExecutionWorkload &workload)
{
    bool is_valid = true;
    std::for_each(std::begin(workload.outputs), std::end(workload.outputs), [&](Tensor * output_tensor)
    {
        bool valid_output = (output_tensor != nullptr) && output_tensor->call_accessor();
        is_valid          = is_valid && valid_output;
    });

    return is_valid;
}
} // namespace detail
} // namespace graph
} // namespace arm_compute