aboutsummaryrefslogtreecommitdiff
path: root/src/gpu/cl/operators/ClFullyConnected.cpp
blob: 6969ac8ab34181e5cd598ffc4d1444cf006b7d76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*
 * Copyright (c) 2017-2021, 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/gpu/cl/operators/ClFullyConnected.h"

#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/CL/CLScheduler.h"

#include "src/common/utils/Log.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/gpu/cl/operators/ClConvertFullyConnectedWeights.h"
#include "src/gpu/cl/operators/ClFlatten.h"
#include "src/gpu/cl/operators/ClGemm.h"
#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
#include "src/gpu/cl/operators/ClMatMul.h"
#include "src/gpu/cl/operators/ClTranspose.h"
#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
#include "src/runtime/heuristics/matmul_native/ClMatMulNativeKernelConfig.h"
#include "src/runtime/heuristics/matmul_native/IClMatMulNativeKernelConfig.h"
#include "support/Cast.h"

#include <algorithm>

namespace arm_compute
{
namespace opencl
{
using namespace arm_compute::experimental;
using namespace arm_compute::misc::shape_calculator;

namespace
{
// Function to calculate batched tensor shape in format [M, 1, B0, B1 ..] which is the format matmul expects
inline TensorShape get_reshaped_matmul_tensor(const TensorShape &src)
{
    return TensorShape(src.x(), 1, src.y(), src.collapsed_from(2).z()); // Return value optimisation
}

Status construct_gemmlowp_output_stage(const ITensorInfo       &src,
                                       const ITensorInfo       &weights,
                                       const ITensorInfo       &dst,
                                       GEMMLowpOutputStageInfo &gemmlowp_output_stage,
                                       ActivationLayerInfo      activation_info)
{
    gemmlowp_output_stage.type                = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
    gemmlowp_output_stage.gemmlowp_offset     = 0;
    gemmlowp_output_stage.gemmlowp_multiplier = 0;
    gemmlowp_output_stage.gemmlowp_shift      = 0;

    const auto data_type = src.data_type();

    // Configure output stage for quantized case
    if (is_data_type_quantized_asymmetric(data_type))
    {
        const QuantizationInfo        oq_info = dst.quantization_info();
        const UniformQuantizationInfo iq_unif = src.quantization_info().uniform();
        const UniformQuantizationInfo wq_unif = weights.quantization_info().uniform();
        const UniformQuantizationInfo oq_unif = oq_info.uniform();

        const auto output_quant_info = (dst.total_size() == 0) ? iq_unif : oq_unif;

        const float multiplier        = (iq_unif.scale * wq_unif.scale) / output_quant_info.scale;
        int         output_multiplier = 0;
        int         output_shift      = 0;
        ARM_COMPUTE_RETURN_ON_ERROR(
            quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));

        PixelValue type_min{};
        PixelValue type_max{};
        std::tie(type_min, type_max) = get_min_max(data_type);

        if (activation_info.enabled())
        {
            std::tie(type_min, type_max) =
                get_quantized_activation_min_max(activation_info, data_type, output_quant_info);
        }

        // Set the GEMMLowp output stage info
        gemmlowp_output_stage.gemmlowp_offset     = output_quant_info.offset;
        gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
        gemmlowp_output_stage.gemmlowp_shift      = output_shift;
        gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
        gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
        type_min.get(gemmlowp_output_stage.gemmlowp_min_bound);
        type_max.get(gemmlowp_output_stage.gemmlowp_max_bound);
    }

    return Status{};
}

Status validate_mm(const ITensorInfo             &src,
                   const ITensorInfo             &weights,
                   const ITensorInfo             *bias,
                   const ITensorInfo             &dst,
                   const FullyConnectedLayerInfo &fc_info,
                   bool                           use_matmul)
{
    // Note : If input is dynamic and data is not batched, use matmul, else use gemm
    const bool transpose_weights = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
    const bool use_dynamic_gemm =
        !use_matmul && !weights.are_values_constant() && transpose_weights; // use dynamic gemm as fallback for matmul
    const bool is_quantized = is_data_type_quantized_asymmetric(src.data_type());

    if (use_matmul)
    {
        const MatMulInfo m_info = MatMulInfo().adj_rhs(transpose_weights);

        // Note: LHS is reshaped here to match ClMatMul expectations of batch index - From [M, B0, B1] to [M, 1, B0, B1]
        TensorInfo lhs_to_use = src.clone()->set_tensor_shape(get_reshaped_matmul_tensor(src.tensor_shape()));

        const GPUTarget                                         gpu_target = CLScheduler::get().target();
        std::unique_ptr<cl_matmul::IClMatMulNativeKernelConfig> t =
            cl_matmul::ClMatMulNativeKernelConfigurationFactory::create(gpu_target);
        const MatMulKernelInfo kernel_info = t->configure(&lhs_to_use, &weights, m_info);

        return is_quantized ? kernels::ClMatMulLowpNativeKernel::validate(&lhs_to_use, &weights, bias, &dst,
                                                                          kernel_info, fc_info.activation_info)
                            : kernels::ClMatMulNativeKernel::validate(&lhs_to_use, &weights, bias, &dst, kernel_info,
                                                                      fc_info.activation_info);
    }
    else
    {
        GEMMLowpOutputStageInfo gemmlowp_output_stage;
        ARM_COMPUTE_RETURN_ON_ERROR(
            construct_gemmlowp_output_stage(src, weights, dst, gemmlowp_output_stage, fc_info.activation_info));

        const GEMMInfo &gemm_info = GEMMInfo(false,                           // is_a_reshaped
                                             false,                           // is_b_reshaped
                                             !use_dynamic_gemm,               // reshape_b_only_on_first_run
                                             0,                               // depth_output_gemm3d
                                             false,                           // reinterpret_input_as_3d
                                             fc_info.retain_internal_weights, // retain_internal_weights
                                             gemmlowp_output_stage,           // gemmlowp_output_stage
                                             fc_info.fp_mixed_precision,      // fp_mixed_precision
                                             false,                           // fast_math
                                             true,                            // broadcast_bias
                                             ActivationLayerInfo());          // activation_info

        if (is_quantized)
        {
            const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
            const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();

            // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
            // Extract and negate src and weights offset
            const QuantizationInfo src_quantization_info(iq_info.scale, -iq_info.offset);
            const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);

            // Validate gemmlowp function
            ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyCore::validate(
                &src.clone()->set_quantization_info(src_quantization_info),
                &weights.clone()->set_quantization_info(weights_quantization_info), bias, &dst, gemm_info));
        }
        else
        {
            ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&src, &weights, bias, &dst, 1.f, 1.f, gemm_info));
        }
    }

    return Status{};
}
} // namespace

ClFullyConnected::ClFullyConnected()
    : _convert_weights(nullptr),
      _flatten(nullptr),
      _reshape_weights(nullptr),
      _mm_gemm(nullptr),
      _mm_gemmlowp(nullptr),
      _matmul_native_kernel(nullptr),
      _matmul_lowp_native_kernel(nullptr),
      _aux_mem(Count)
{
}

ClFullyConnected::~ClFullyConnected() = default;

void ClFullyConnected::configure_mm(const CLCompileContext        &compile_context,
                                    ITensorInfo                   *src,
                                    ITensorInfo                   *weights,
                                    ITensorInfo                   *bias,
                                    ITensorInfo                   *dst,
                                    const FullyConnectedLayerInfo &fc_info)
{
    // If weights are dynamic and matmul is supported use matmul, else use gemm
    if (_use_matmul)
    {
        // Specify whether transpose weights is necessary in matmul info
        const MatMulInfo mat_info = MatMulInfo().adj_rhs(_transpose_weights);

        // Note: MatMul does not need offset negation unlike gemm
        // 1. Change shape when calling matmul to fit batch expectations.
        _lhs_to_use = src->clone()->set_tensor_shape(get_reshaped_matmul_tensor(_lhs_to_use.tensor_shape()));

        // 2. Use heuristics to get kernel info object
        const GPUTarget                                         gpu_target = CLScheduler::get().target();
        std::unique_ptr<cl_matmul::IClMatMulNativeKernelConfig> kernel_config =
            cl_matmul::ClMatMulNativeKernelConfigurationFactory::create(gpu_target);
        MatMulKernelInfo kernel_info = kernel_config->configure(src, weights, mat_info);

        // 3. Configure relevant matmul kernel
        if (_is_quantized)
        {
            _matmul_lowp_native_kernel = std::make_unique<kernels::ClMatMulLowpNativeKernel>();
            _matmul_lowp_native_kernel->set_target(gpu_target);
            _matmul_lowp_native_kernel->configure(compile_context, src, weights, bias, dst, kernel_info,
                                                  fc_info.activation_info);
        }
        else
        {
            _matmul_native_kernel = std::make_unique<kernels::ClMatMulNativeKernel>();
            _matmul_native_kernel->set_target(gpu_target);
            _matmul_native_kernel->configure(compile_context, src, weights, bias, dst, kernel_info,
                                             fc_info.activation_info);
        }
    }
    else
    {
        // Configure GEMM
        GEMMLowpOutputStageInfo gemmlowp_output_stage;
        construct_gemmlowp_output_stage(*src, *weights, *dst, gemmlowp_output_stage, fc_info.activation_info);

        const GEMMInfo &gemm_info = GEMMInfo(false,                           // is_a_reshaped
                                             false,                           // is_b_reshaped
                                             !_dynamic_gemm,                  // reshape_b_only_on_first_run
                                             0,                               // depth_output_gemm3d
                                             false,                           // reinterpret_input_as_3d
                                             fc_info.retain_internal_weights, // retain_internal_weights
                                             gemmlowp_output_stage,           // gemmlowp_output_stage
                                             fc_info.fp_mixed_precision,      // fp_mixed_precision
                                             false,                           // fast_math
                                             true,                            // broadcast_bias
                                             fc_info.activation_info);        // activation_info

        if (_is_quantized)
        {
            // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
            // Extract and negate input and weights offset
            const QuantizationInfo src_quantization_info     = src->quantization_info();
            const QuantizationInfo weights_quantization_info = weights->quantization_info();

            TensorInfo src_info     = src->clone()->set_quantization_info(src_quantization_info);
            TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);

            src_info.set_quantization_info(
                QuantizationInfo(src_quantization_info.uniform().scale, -src_quantization_info.uniform().offset));
            weights_info.set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale,
                                                                -weights_quantization_info.uniform().offset));

            // Configure gemmlowp function
            _mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
            _mm_gemmlowp->configure(compile_context, &src_info, &weights_info, bias, dst, gemm_info);
        }
        else
        {
            // Configure matrix multiply kernel
            _mm_gemm = std::make_unique<ClGemm>();
            _mm_gemm->configure(compile_context, src, weights, bias, dst, 1.f, 1.f, gemm_info);
        }
    }
}

void ClFullyConnected::configure_conv_fc(const CLCompileContext        &compile_context,
                                         ITensorInfo                   *src,
                                         ITensorInfo                   *weights,
                                         ITensorInfo                   *bias,
                                         ITensorInfo                   *dst,
                                         const FullyConnectedLayerInfo &fc_info)
{
    // MatMul fuses transpose operation, so we use the first dimension for comparison where appropriate.
    ARM_COMPUTE_ERROR_ON((weights->dimension((_use_matmul && _transpose_weights) ? 0 : 1) !=
                          (src->dimension(0) * src->dimension(1) * src->dimension(2))));

    // If the fully connected layer is called after a convolution layer, the input tensor must be linearized

    // Initialize output tensor for flatten
    _flattened_src = src->clone()
                         ->set_is_resizable(true)
                         .reset_padding()
                         .set_tensor_shape(compute_flatten_shape(src))
                         .set_data_layout(DataLayout::NCHW);

    // Configure flatten kernel
    _flatten = std::make_unique<ClFlatten>();
    _flatten->configure(compile_context, src, &_flattened_src);

    // Note: if flatten has > 1 dimensions after, these dimensions are batch
    // Configure matrix multiply kernel
    configure_mm(compile_context, &_flattened_src, weights, bias, dst, fc_info);
}

void ClFullyConnected::configure_fc_fc(const CLCompileContext        &compile_context,
                                       ITensorInfo                   *src,
                                       ITensorInfo                   *weights,
                                       ITensorInfo                   *bias,
                                       ITensorInfo                   *dst,
                                       const FullyConnectedLayerInfo &fc_info)
{
    // MatMul fuses transpose operation, so we use the first dimension for comparison where appropriate.
    ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension((_use_matmul && _transpose_weights) ? 0 : 1));

    // Configure matrix multiply kernel
    configure_mm(compile_context, src, weights, bias, dst, fc_info);
}

void ClFullyConnected::configure(const CLCompileContext &compile_context,
                                 ITensorInfo            *src,
                                 ITensorInfo            *weights,
                                 ITensorInfo            *biases,
                                 ITensorInfo            *dst,
                                 FullyConnectedLayerInfo fc_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
    const GPUTarget gpu_target = get_arch_from_target(CLScheduler::get().target());

    // Perform validate step
    ARM_COMPUTE_ERROR_THROW_ON(ClFullyConnected::validate(src, weights, biases, dst, fc_info));
    ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, fc_info);

    _transpose_weights  = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
    _is_fc_after_conv   = true;
    _is_quantized       = is_data_type_quantized_asymmetric(src->data_type());
    _is_prepared        = fc_info.retain_internal_weights;
    _weights_to_use     = TensorInfo(*weights);
    _weights_to_use_idx = ACL_SRC_1;

    // When using dynamic weights - use matmul kernels.
    // Note: MatMul is not used in the following cases (Gemm is used as fallback) :
    // 1. When the weights tensor is not dynamic
    // 2. MatMul does not support broadcasting batch dimension, and therefore is disabled if fc is batched.
    // 3. When FC is after convolution and src tensor data layout does not match weights trained data layout (weights conversion kernel is required)
    const bool is_batched_fc_layer = dst->dimension(1) > 1;
    _use_matmul = gpu_target != GPUTarget::MIDGARD && !weights->are_values_constant() && !is_batched_fc_layer &&
                  !(src->num_dimensions() > 1 && (src->data_layout() != fc_info.weights_trained_layout));
    _dynamic_gemm = !weights->are_values_constant() && _transpose_weights && !_use_matmul;

    // With the Fully Connected layer we can have 4 different cases:
    //  1) Convolution layer -> Fully Connected layer without batches
    //  2) Fully Connected layer -> Fully Connected layer without batches
    //  3) Convolution layer -> Fully Connected layer with batches
    //  4) Fully Connected layer -> Fully Connected layer with batches

    // Check if we have a fully connected layer with batches
    if (is_batched_fc_layer)
    {
        _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) &&
                            (std::equal(src->tensor_shape().cbegin() + 3, src->tensor_shape().cend(),
                                        dst->tensor_shape().cbegin() + 1));
    }
    else
    {
        _is_fc_after_conv = src->num_dimensions() > 1;
    }

    ITensorInfo *weights_used = weights;

    // Reshape weights if needed - Not needed when matmul is in use as matmul fuses transpose op.
    if (_transpose_weights && !_use_matmul)
    {
        // Reshape the weights
        _reshape_weights = std::make_unique<ClTranspose>();
        _reshape_weights->configure(compile_context, weights, &_reshaped_weights);
        weights_used        = &_reshaped_weights;
        _weights_to_use_idx = offset_int_vec(TransposedWeights);
    }

    // Convert weights if needed
    if (_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
    {
        // Convert weights
        _convert_weights = std::make_unique<ClConvertFullyConnectedWeights>();
        _convert_weights->configure(compile_context, weights_used, &_converted_weights, src->tensor_shape(),
                                    fc_info.weights_trained_layout);

        weights_used         = &_converted_weights;
        _weights_to_use_idx  = offset_int_vec(ConvertedWeights);
        _run_convert_weights = true;
    }

    if (_is_fc_after_conv)
    {
        // Fully Connected layer after a Convolution Layer without batches
        configure_conv_fc(compile_context, src, weights_used, biases, dst, fc_info);
    }
    else
    {
        // Fully Connected layer after a Fully Connected Layer without batches
        configure_fc_fc(compile_context, src, weights_used, biases, dst, fc_info);
    }
    // Update TensorInfo of final weights used (Need to be done in the end due to padding expansion)
    _weights_to_use = *weights_used;

    if (_use_matmul)
    {
        // Note : MatMul does not use transpose and does not need auxillary memory, so only converted weights are added to aux_mem
        _aux_mem[ConvertedWeights] =
            MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Temporary, _converted_weights.total_size());
    }
    else
    {
        // Set auxiliary memory requirements for gemm operators
        auto gemm_mem_req = (_is_quantized) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
        for (unsigned int i = 0; i < gemm_mem_req.size(); ++i)
        {
            _aux_mem[i] = gemm_mem_req[i];
        }
        if (_aux_mem[1].size > 0 || _aux_mem[2].size > 0) // Persistent weights memory on GEMMs
        {
            // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
            // Keep all the auxiliary tensors in case of dynamic weights as they are recalculated every time
            _aux_mem[TransposedWeights] = MemoryInfo(
                offset_int_vec(TransposedWeights), _dynamic_gemm ? MemoryLifetime::Temporary : MemoryLifetime::Prepare,
                _reshaped_weights.total_size());
            _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights),
                                                    _dynamic_gemm ? MemoryLifetime::Temporary : MemoryLifetime::Prepare,
                                                    _converted_weights.total_size());
        }
        else
        {
            // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
            const auto transposed_wei_lft = (_weights_to_use_idx == offset_int_vec(TransposedWeights))
                                                ? MemoryLifetime::Persistent
                                                : MemoryLifetime::Prepare;
            const auto converted_wei_lft  = (_weights_to_use_idx == offset_int_vec(ConvertedWeights))
                                                ? MemoryLifetime::Persistent
                                                : MemoryLifetime::Prepare;

            _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights),
                                                     _dynamic_gemm ? MemoryLifetime::Temporary : transposed_wei_lft,
                                                     _reshaped_weights.total_size());
            _aux_mem[ConvertedWeights]  = MemoryInfo(offset_int_vec(ConvertedWeights),
                                                    _dynamic_gemm ? MemoryLifetime::Temporary : converted_wei_lft,
                                                     _converted_weights.total_size());
        }
    }
    _aux_mem[FlattenedSrc] =
        MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
}

Status ClFullyConnected::validate(const ITensorInfo      *src,
                                  const ITensorInfo      *weights,
                                  const ITensorInfo      *biases,
                                  const ITensorInfo      *dst,
                                  FullyConnectedLayerInfo fc_info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
                                                         DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
    ARM_COMPUTE_RETURN_ERROR_ON(
        fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) &&
        fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU &&
        fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU &&
        fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
    const GPUTarget gpu_target = get_arch_from_target(CLScheduler::get().target());

    const bool transpose_weights = fc_info.transpose_weights ? !fc_info.are_weights_reshaped : false;
    bool       is_fc_after_conv  = true;

    // When using dynamic weights - use matmul kernels.
    // Note: MatMul does not support broadcasting so fallback with batched cases.
    const bool is_batched_fc_layer = dst->dimension(1) > 1;
    const bool use_matmul          = gpu_target != GPUTarget::MIDGARD && !weights->are_values_constant() &&
                            !is_batched_fc_layer &&
                            !(src->num_dimensions() > 1 && (src->data_layout() != fc_info.weights_trained_layout));

    const ITensorInfo &flatten_src      = TensorInfo(src->clone()
                                                         ->set_is_resizable(true)
                                                         .reset_padding()
                                                         .set_tensor_shape(compute_flatten_shape(src))
                                                         .set_data_layout(DataLayout::NCHW));
    const ITensorInfo &reshaped_weights = TensorInfo(
        weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
    const ITensorInfo &converted_weights = (transpose_weights && !use_matmul)
                                               ? TensorInfo(*reshaped_weights.clone())
                                               : TensorInfo(weights->clone()->set_is_resizable(true).reset_padding());

    // With the Fully Connected layer we can have 4 different cases:
    //  1) Convolution layer -> Fully Connected layer without batches
    //  2) Fully Connected layer -> Fully Connected layer without batches
    //  3) Convolution layer -> Fully Connected layer with batches
    //  4) Fully Connected layer -> Fully Connected layer with batches

    const ITensorInfo *src_to_use     = src;
    const ITensorInfo *weights_to_use = weights;

    if (biases != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
        if (is_data_type_quantized(src->data_type()))
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
        }
    }

    // Check if FC is after conv (flatten kernel is run in case where FC is after conv.)
    if (is_batched_fc_layer)
    {
        is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) &&
                           (std::equal(src->tensor_shape().cbegin() + 3, src->tensor_shape().cend(),
                                       dst->tensor_shape().cbegin() + 1));
    }
    else
    {
        is_fc_after_conv = src->num_dimensions() > 1;
    }

    // Transpose kernel does not run when matmul is supported as matmul fuses transpose op.
    if (transpose_weights && !use_matmul)
    {
        // Validate reshape weights kernel
        ARM_COMPUTE_RETURN_ON_ERROR(ClTranspose::validate(weights, &reshaped_weights));
        weights_to_use = &reshaped_weights;
    }

    if (is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
    {
        // Validate convert weights kernel
        ARM_COMPUTE_RETURN_ON_ERROR(ClConvertFullyConnectedWeights::validate(
            weights_to_use, &converted_weights, src->tensor_shape(), fc_info.weights_trained_layout));
        weights_to_use = &converted_weights;
    }

    if (is_fc_after_conv)
    {
        // Fully Connected layer after a Convolution Layer without batches
        // K Index of matrix multiplication. MatMul performs transpose in kernel, so index is 0 when matmul and transpose enabled
        const int weight_idx = (use_matmul && transpose_weights) ? 0 : 1;
        ARM_COMPUTE_RETURN_ERROR_ON(
            (weights_to_use->dimension(weight_idx) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));

        // Validate flatten kernel
        ARM_COMPUTE_RETURN_ON_ERROR(ClFlatten::validate(src, &flatten_src));
        src_to_use = &flatten_src;
    }
    else
    {
        // Fully Connected layer after a Fully Connected Layer without batches
        // K Index of matrix multiplication. MatMul performs transpose in kernel, so index is 0 when matmul and transpose enabled
        const int weight_idx = (use_matmul && transpose_weights) ? 0 : 1;
        ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(weight_idx));
    }

    // Validate matrix multiply kernel
    ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*src_to_use, *weights_to_use, biases, *dst, fc_info, use_matmul));

    return Status{};
}

void ClFullyConnected::run(ITensorPack &tensors)
{
    prepare(tensors);

#ifdef ARM_COMPUTE_ASSERTS_ENABLED
    ++_asrt_run_count;
    ARM_COMPUTE_ERROR_ON(_dynamic_gemm && _asrt_prepare_count != _asrt_run_count);
#endif // ARM_COMPUTE_ASSERTS_ENABLED

    auto src = tensors.get_const_tensor(ACL_SRC_0);

    CLAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
    CLAuxTensorHandler weights(_weights_to_use_idx, _weights_to_use, tensors, false);

    // Linearize input if it comes from a convolutional layer
    if (_is_fc_after_conv)
    {
        ITensorPack flatten_pack{{ACL_SRC, src}, {ACL_DST, flattened_src.get()}};
        _flatten->run(flatten_pack);
    }

    ITensorPack gemm_pack = tensors;
    gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
    if (_weights_to_use_idx != ACL_SRC_1)
    {
        gemm_pack.add_const_tensor(ACL_SRC_1, weights.get());
    }

    // Run MatMul Op
    if (_use_matmul)
    {
        // Run matmul kernels for matrix multiplication
        if (_is_quantized)
        {
            CLScheduler::get().enqueue_op(*_matmul_lowp_native_kernel, gemm_pack, true);
        }
        else
        {
            CLScheduler::get().enqueue_op(*_matmul_native_kernel, gemm_pack, true);
        }
    }
    else
    {
        // Run matrix multiply
        if (_is_quantized)
        {
            _mm_gemmlowp->run(gemm_pack);
        }
        else
        {
            _mm_gemm->run(gemm_pack);
        }
    }
}

void ClFullyConnected::prepare(ITensorPack &tensors)
{
    // Note : Running prepare() each run when _use_matmul is true is unnecessary unless weights conversion is needed.
    if (!_is_prepared || _dynamic_gemm)
    {
#ifdef ARM_COMPUTE_ASSERTS_ENABLED
        ++_asrt_prepare_count;
        ARM_COMPUTE_ERROR_ON(!_dynamic_gemm && !_use_matmul && _asrt_prepare_count > 1);
#endif // ARM_COMPUTE_ASSERTS_ENABLED

        auto weights = tensors.get_const_tensor(ACL_SRC_1);

        CLAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
        CLAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);

        // Pointer to current weights
        const ITensor *cur_weights = weights;

        // Reshape weights if needed. Disabled when matmul kernels are enabled as matmul fuses transpose.
        if (_transpose_weights && !_use_matmul)
        {
            // Run reshape weights kernel and mark weights as unused
            ITensorPack transpose_pack{{ACL_SRC, weights}, {ACL_DST, reshaped_weights.get()}};
            _reshape_weights->run(transpose_pack);

            cur_weights->mark_as_unused();
            cur_weights = reshaped_weights.get();
        }

        // Convert weights if needed
        if (_run_convert_weights)
        {
            ITensorPack convert_pack{{ACL_SRC, cur_weights}, {ACL_DST, converted_weights.get()}};
            _convert_weights->run(convert_pack);

            cur_weights->mark_as_unused();
            cur_weights = converted_weights.get();
        }

        ITensorPack gemm_pack = tensors;
        gemm_pack.add_const_tensor(ACL_SRC_1, cur_weights);

        // Prepare GEMM prepare and release unused weights
        if (_dynamic_gemm || !_use_matmul)
        {
            if (!_is_quantized)
            {
                _mm_gemm->prepare(gemm_pack);
            }
            else
            {
                _mm_gemmlowp->prepare(gemm_pack);
            }
        }

        _is_prepared = true;
    }
}

experimental::MemoryRequirements ClFullyConnected::workspace() const
{
    return _aux_mem;
}
} // namespace opencl
} // namespace arm_compute