aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemmConv2d.cpp
blob: 55d950ff4a21eb6ae3f9fe5d0405674b186cab02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
/*
 * Copyright (c) 2021-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/operators/CpuGemmConv2d.h"

#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"

#include "src/common/utils/Log.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/core/helpers/Utils.h"
#include "src/cpu/kernels/CpuCol2ImKernel.h"
#include "src/cpu/kernels/CpuIm2ColKernel.h"
#include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
#include "src/cpu/operators/CpuGemm.h"
#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
#include "src/cpu/operators/CpuGemmLowpOutputStage.h"
#include "src/cpu/operators/CpuReshape.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"

#include <set>
#include <tuple>

using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::experimental;

namespace arm_compute
{
namespace cpu
{

/** @section note_CpuGemmConv2d_weight_transformation Weight Transformations in CpuGemmConv2d
 *
 * A. Terminology
 *      Throughout CpuGemmConv2d, we use the following terms in ways that may differ from other operators / kernels:
 *          - "Transform" or "Reshape" of the weights: they both mean all the operations that we perform on the weight
 *             tensor up until they are consumed by gemm (CpuGemm or CpuGemmLowpMatrixMultiplyCore)
 *             Note that the specific gemm operator may perform further transformations on the weights, but the
 *             transformations here only mean those performed in CpuGemmConv2d
 *          - "Transpose" of weights: The @ref CpuTranspose operation. I.e. transpose of the weights' lowest two
 *             dimensions
 *
 * B. Gemm-based conv2d
 *      We want to convert the 2d convolution op (ignoring bias):
 *          dst = conv2d(src, weight)
 *      into a matrix multiplication op:
 *          gemm_dst = gemm(lhs, rhs)
 *
 *      E.g.: For data layout NHWC
 *                               3 (hi) <----------> (lo) 0
 *               src.shape =    [batch,  in_h , in_w,  in_c]
 *               weight.shape = [out_c,   k_h ,  k_w,  in_c]
 *               dst.shape =    [batch, out_h, out_w, out_c]
 *
 *      This requires three transformations:
 *          * src -> lhs, transform conv input to gemm lhs; gemm_lhs is a 2d matrix where each row (or column,
 *                          depending on the convention) is a linearized "patch" of the conv_input that corresponds to
 *                          the receptive field of the corresponding output element.
 *                          The convention is to use "column", but to disambiguate from the column vector of a matrix,
 *                          in this documentation we shall use "patch".
 *                          This transform is called im2col (for details see @ref CpuIm2ColKernel)
 *          * weight -> rhs, transform conv weight to gemm rhs, known as weight transform/reshape (wt)
 *          * gemm_dst -> dst, transform gemm output back to conv output, known as col2im (for details see
 *                          @ref CpuCol2ImKernel)
 *
 *      This section focuses on the weight transformation and assumes the im2col is already performed
 *
 * C. Weight Transformation
 *      After im2col, assume: lhs.shape = [num_patch, patch_size],
 *          where patch_size is the number of elements in a "patch": patch_size = k_h * k_w * in_c
 *                num_patch is the number of patches; we can ignore it here (for details see @ref CpuIm2ColKernel)
 *
 *      After wt, rhs should have the shape: rhs = [patch_size, out_c]
 *
 *      Therefore, the weight transformation consists of two steps:
 *          1. Collapsing all 3 spatial dimensions: [out_c, k_h, k_w, in_c] -> [out_c, patch_size]
 *          2. Transpose the collapsed shape: [out_c, patch_size] -> [patch_size, out_c]
 *
 * D. Implementation
 *      There are 4 paths for weight transformation
 *
 *      1. Path 1: Fixed weight format - no transformation
 *          The underlying gemm kernel may adopt fixed weight format (isVarWeightsKernel() == true), which requires
 *          that no weight transformation shall be performed
 *          Note that this no-transform requirement applies both to this op (CpuGemmConv2d) and the constituent ops, up
 *          until the fixed format kernels themselves
 *
 *      2. Path 2: Reinterpret then transpose later
 *          If the weight tensor has no "holes" (see @ref has_holes), there are two optimizations we can apply:
 *              - We can ignore the first step (collapsing of spatial dimensions) by simply re-interpreting the shape
 *                in TensorInfo
 *              - Instead of performing transpose here, we can pass the transpose flag to the underlying gemm. The gemm
 *                may then decide to fuse the transpose with any further transformations
 *
 *      3. Path 3: Reshape then transpose later
 *          If the weight tensor has holes, then we use a dedicated @ref CpuReshape, followed by transpose later
 *
 *      4. Path 4: Fused reshape and transpose
 *          This is only for quantized types for now (TODO: Remove (COMPMID-6596)). We fall back to a legacy
 *          non-optimized kernel @ref CpuWeightsReshapeKernel to perform a fused reshape + transpose
 *
 *      Path 1 is the long term solution that we shall migrate to once (if) we adopt fixed weight format for all gemm
 *      kernels.
 *      In the short term, Path 2 is the favored, more performant path.
 */

namespace
{
/** Initialize reshaped / transformed weight info
 *
 * @param[in]  weights          Input weights
 * @param[out] reshaped_weights Transformed weights
 */
void initialize_reshaped_weight_info(const ITensorInfo &weights, ITensorInfo &reshaped_weights)
{
    auto_init_if_empty(reshaped_weights, weights);
    if (is_data_type_quantized(weights.data_type()))
    {
        // WT method: FusedReshapeAndTranspose
        reshaped_weights.set_tensor_shape(compute_weights_reshaped_shape(weights, /* has_bias */ false));
    }
    else
    {
        TensorShape collapsed_weights = weights.tensor_shape();
        collapsed_weights.collapse(3);
        reshaped_weights.set_tensor_shape(collapsed_weights);
    }
}
} // namespace

CpuGemmConv2d::WeightTransformMethod CpuGemmConv2d::get_wt_method(const ITensorInfo &weights)
{
    // TODO: Extend ReinterpretThenTranspose support for quantized data types COMPMID-6596
    if (is_data_type_quantized(weights.data_type()))
    {
        return WeightTransformMethod::FusedReshapeAndTranspose;
    }
    return has_holes(weights) ? WeightTransformMethod::ReshapeThenTranspose
                              : WeightTransformMethod::ReinterpretThenTranspose;
}

CpuGemmConv2d::SkipInfo CpuGemmConv2d::skip_im_col_info(const ITensorInfo         *src,
                                                        const ITensorInfo         *weights,
                                                        const PadStrideInfo       &conv_info,
                                                        const Size2D              &dilation,
                                                        const ActivationLayerInfo &act_info)
{
    const DataLayout   data_layout   = src->data_layout();
    const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);
    unsigned int       conv_w        = 0;
    unsigned int       conv_h        = 0;
    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
                                                 kernel_height, conv_info, dilation);
    const bool skip_im2col   = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 &&
                              conv_info.stride().first == 1 && conv_info.stride().second == 1);

    if (skip_im2col)
    {
        const bool skip_col2im =
            (data_layout == DataLayout::NHWC &&
             (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ true))));
        if (skip_col2im)
        {
            return {true, true};
        }
    }
    else
    {
        const bool skip_col2im =
            (data_layout == DataLayout::NHWC &&
             (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ false))));
        if (skip_col2im)
        {
            return {false, true};
        }
    }

    // Default case when we cannot reinterpret the input and output as 3D.
    return {false, false};
}

CpuGemmConv2d::CpuGemmConv2d()
    : _weights_reshape(nullptr),
      _weights_reshape_and_transpose_kernel(nullptr),
      _im2col_kernel(),
      _mm_gemm(),
      _mm_gemmlowp(),
      _col2im_kernel(),
      _reshape(),
      _im2col_output(),
      _weights_reshaped(),
      _gemm_output(),
      _gemm_output_3d(),
      _data_layout(DataLayout::NCHW),
      _skip_im2col(false),
      _skip_col2im(false),
      _is_quantized(false),
      _is_prepared(false),
      _wt_method(WeightTransformMethod::ReshapeThenTranspose),
      _run_wt(true),
      _aux_mem(AuxTensorIdx::Count)
{
}
CpuGemmConv2d::~CpuGemmConv2d() = default;

void CpuGemmConv2d::configure_mm(const ITensorInfo         *src,
                                 const ITensorInfo         *weights,
                                 const ITensorInfo         *biases,
                                 ITensorInfo               *dst,
                                 const ActivationLayerInfo &act_info,
                                 bool                       enable_fast_math,
                                 int                        gemm_3d_depth,
                                 bool                       fixed_format,
                                 arm_compute::WeightFormat  weight_format)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
    ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth,
                                           _skip_im2col, fixed_format, weight_format));

    // Supported activations in GEMM
    const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = {
        ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
        ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU};

    if (_is_quantized)
    {
        TensorInfo tmp_src{*src};
        TensorInfo tmp_weights{*weights};
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo        iqinfo    = src->quantization_info();
        const QuantizationInfo        wqinfo    = weights->quantization_info();
        const QuantizationInfo        oqinfo    = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
        const UniformQuantizationInfo uiqinfo   = iqinfo.uniform();
        const UniformQuantizationInfo uoqinfo   = oqinfo.uniform();
        const DataType                data_type = src->data_type();

        tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset));
        if (!is_data_type_quantized_per_channel(tmp_weights.data_type()))
        {
            const UniformQuantizationInfo uwqinfo = wqinfo.uniform();
            tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset));
        }

        // Merge activation with output stage
        PixelValue type_min{};
        PixelValue type_max{};
        std::tie(type_min, type_max) = get_min_max(data_type);
        int32_t min_activation       = type_min.get<int32_t>();
        int32_t max_activation       = type_max.get<int32_t>();

        if (supported_acts.count(act_info.activation()) != 0)
        {
            std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
        }

        GEMMLowpOutputStageInfo output_info;
        output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
        output_info.gemmlowp_offset          = uoqinfo.offset;
        output_info.gemmlowp_min_bound       = min_activation;
        output_info.gemmlowp_max_bound       = max_activation;
        output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL);
        quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info);

        _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
        _mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst,
                                GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false,
                                         enable_fast_math, false, act_info, fixed_format, weight_format,
                                         false /* pretranspose_B. TODO: COMPMID-6596 */));

        auto mm_mem_req = _mm_gemmlowp->workspace();
        for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
        {
            _aux_mem[cont] = mm_mem_req[cont];
        }
    }
    else
    {
        // Create GEMMInfo structure
        const GEMMInfo &gemm_info =
            GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth,
                     _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, false,
                     GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, fixed_format, weight_format,
                     true /*pretranspose_B. For fp gemm (wt path 1 - 3), We always pretranspose B (for wt path 1 this
                     flag is ignored)*/);
        // Configure matrix multiply function
        _mm_gemm = std::make_unique<CpuGemm>();
        _mm_gemm->configure(src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
        auto mm_mem_req = _mm_gemm->workspace();
        for (unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
        {
            _aux_mem[cont] = mm_mem_req[cont];
        }
    }
}

Status CpuGemmConv2d::validate_mm(const ITensorInfo         *src,
                                  const ITensorInfo         *weights,
                                  const ITensorInfo         *biases,
                                  const ITensorInfo         *dst,
                                  const ActivationLayerInfo &act_info,
                                  bool                       enable_fast_math,
                                  int                        gemm_3d_depth,
                                  bool                       skip_im2col,
                                  bool                       fixed_format,
                                  arm_compute::WeightFormat  weight_format)
{
    const DataType data_type             = src->data_type();
    const bool     is_quantized          = is_data_type_quantized_asymmetric(data_type);
    const bool     is_activation_enabled = act_info.enabled();

    if (is_quantized)
    {
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo       &iqinfo  = src->quantization_info();
        const QuantizationInfo       &wqinfo  = weights->quantization_info();
        const QuantizationInfo       &oqinfo  = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
        const UniformQuantizationInfo uoqinfo = oqinfo.uniform();

        // Merge activation with output stage
        PixelValue type_min{};
        PixelValue type_max{};
        std::tie(type_min, type_max) = get_min_max(data_type);
        int32_t min_activation       = type_min.get<int32_t>();
        int32_t max_activation       = type_max.get<int32_t>();

        const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = {
            ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
            ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU};
        if (is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
        {
            std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
        }

        GEMMLowpOutputStageInfo output_info;
        output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
        output_info.gemmlowp_offset          = uoqinfo.offset;
        output_info.gemmlowp_min_bound       = min_activation;
        output_info.gemmlowp_max_bound       = max_activation;
        output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info));

        // Perform validation step on GEMMLowp
        std::unique_ptr<ITensorInfo> input_qa   = src->clone();
        std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
        input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset));
        weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset));

        return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst,
                                                       GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false,
                                                                output_info, false, enable_fast_math, false, act_info,
                                                                false /* pretranspose_B. TODO: COMPMID-6596 */));
    }
    else
    {
        // Create GEMMInfo structure
        const GEMMInfo gemm_info =
            GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth,
                     skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, false,
                     GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, fixed_format, weight_format,
                     true /*pretranspose_B. For fp gemm (wt path 1 - 3), We always pretranspose B (for wt path 1 this
                     flag is ignored)*/);

        // Perform validation step on Matrix multiply function
        return CpuGemm::validate(src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
    }
}

Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo         *input_info,
                                      const ITensorInfo         *weights_info,
                                      const ActivationLayerInfo &act_info,
                                      int                        gemm_3d_depth,
                                      bool                       skip_im2col)
{
    const DataType     data_type = input_info->data_type();
    const unsigned int mult_y    = skip_im2col ? 1U : gemm_3d_depth;
    const unsigned int mult_z    = skip_im2col ? gemm_3d_depth : 1U;

    // Set dummy tensor shapes for the validation
    const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type,
                                      input_info->quantization_info());
    const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info());
    const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type,
                                       input_info->quantization_info());

    return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false,
                       gemm_3d_depth, skip_im2col);
}

void CpuGemmConv2d::configure(const ITensorInfo         *src,
                              const ITensorInfo         *weights,
                              const ITensorInfo         *biases,
                              ITensorInfo               *dst,
                              const PadStrideInfo       &conv_info,
                              const WeightsInfo         &weights_info,
                              const Size2D              &dilation,
                              const ActivationLayerInfo &act_info,
                              bool                       enable_fast_math,
                              unsigned int               num_groups)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_UNUSED(num_groups, weights_info);
    ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src, weights, biases, dst, conv_info, weights_info, dilation,
                                                       act_info, enable_fast_math, num_groups));
    ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, weights_info, dilation, act_info, enable_fast_math,
                           num_groups);

    const DataType   data_type   = src->data_type();
    const DataLayout data_layout = src->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);

    _is_prepared  = weights_info.retain_internal_weights();
    _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
    _data_layout  = data_layout;
    _skip_im2col  = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 &&
                    conv_info.stride().first == 1 && conv_info.stride().second == 1);

    const ITensorInfo *gemm_input_to_use  = src;
    ITensorInfo       *gemm_output_to_use = dst;

    // Get convolved dimensions
    unsigned int conv_w      = 0;
    unsigned int conv_h      = 0;
    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
                                                 kernel_height, conv_info, dilation);

    ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
                             "Output shape does not match the expected one");

    // Check if GEMM3D is supported
    const CpuGemmConv2d::SkipInfo skip_info =
        CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);
    _skip_im2col = skip_info.skip_im2col;
    _skip_col2im = skip_info.skip_col2im;

    // Get parameters from conv_info
    unsigned int stride_x        = 0;
    unsigned int stride_y        = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();

    // Initialize reshaped weights
    initialize_reshaped_weight_info(*weights, _weights_reshaped);

    // Create tensor to store im2col reshaped inputs
    if (!_skip_im2col)
    {
        const int    block_by        = arm_compute::block_by(weights_info.weight_format());
        unsigned int input_pad_right = 0;
        if (block_by > 1)
        {
            input_pad_right =
                (src->dimension(idx_channel) % block_by) == 0 ? 0 : block_by - (src->dimension(idx_channel) % block_by);
        }
        // Configure
        _im2col_kernel = std::make_unique<kernels::CpuIm2ColKernel>();
        _im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation,
                                  num_groups, input_pad_right);

        // Update GEMM input
        gemm_input_to_use = &_im2col_output;
    }

    const unsigned int mat_weights_cols = weights->dimension(idx_kernels);

    // Create temporary GEMM output tensor in case we cannot skip col2im
    const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
    if (!_skip_col2im)
    {
        TensorShape shape_gemm;

        // Calculate GEMM output shape
        shape_gemm = _im2col_output.tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);

        _gemm_output = TensorInfo(shape_gemm, 1, output_data_type);
        _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
        _gemm_output_3d = TensorInfo(_gemm_output);

        // Update GEMM output
        gemm_output_to_use = &_gemm_output;
    }
    else
    {
        _gemm_output_3d = TensorInfo(*dst);
        _gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true);
        _gemm_output = TensorInfo(_gemm_output_3d);

        // Update GEMM output
        gemm_output_to_use = &_gemm_output_3d;
    }

    // Configure GEMM
    // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
    const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
    const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
    /** @section note_CpuGemmConv2d_weight_use_in_configure  Which weights tensor should we use to configure gemm
     *
     *  A. The problem:
     *      In principle, we should use the weights tensor corresponding to the weights transformation path. I.e.:
     *          - If no weight transformation (_run_wt == false): Use original weights
     *          - else:                                           Use transformed weights
     *      However in practice we have a dilemma:
     *          - We need to know _run_wt before we can configure gemm with the corresponding weights, but
     *          - _run_wt depends on isVarWeightsKernel(), which is only known after gemm is configured
     *
     *  B. The decision:
     *      To simplify the matter, we decide to always use the transformed weights, regardless of _run_wt
     *
     *      This decision requires the following conditions:
     *          1. The underlying gemm where isVarWeightsKernel() == true, must guarantee that:
     *              A. Ignore the flag to transpose weights (GEMMInfo::pretranspose_B)
     *              B. Use weights/B tensor passed to it at prepare() or run() instead of that passed at configure()
     *          2. CpuGemmConv2d where isVarWeightsKernel() == true, must guarantee that:
     *              A. Pass original weights instead of reshaped or reinterpreted weights
     *
     *  C. Future actions:
     *      Condition 2 is a given, based on our implementation.
     *      If condition 1 cannot hold, we must make changes to the underlying gemm to:
     *           1. Either expose isVarWeightsKernel() before gemm is configured somehow, or
     *           2. Take in an additional "original_weights" tensor info at configure
     */
    configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math,
                 gemm_3d_depth, fixed_format, weights_info.weight_format());

    // Can only decide isVarWeightsKernel after gemm is configured
    _run_wt = !isVarWeightsKernel();

    if (!_skip_col2im && _data_layout == DataLayout::NCHW)
    {
        // Configure col2im
        _col2im_kernel = std::make_unique<kernels::CpuCol2ImKernel>();
        _col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h));
    }
    else
    {
        // Configure reshape layer
        _reshape = std::make_unique<CpuReshape>();
        _reshape->configure(gemm_output_to_use, dst);
    }

    // Check lifetime
    _aux_mem[Im2ColOutput] =
        MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
    // Add WeightsReshaped memory requirement to workspace
    // Note that in case of WeightTransformMethod::ReinterpretThenTranspose, we do not need to allocate this memory
    // However since we cannot determine weight transformation method until prepare (see prepare()), we will have to
    // settle with allocating more
    if (_run_wt)
    {
        // Check if GEMM transforms weights
        // If weight is further transformed by underlying gemm after ReshapeThenTranspose then we can free
        // WeightsReshaped in prepare
        // Otherwise WeightsReshaped is the final transformation of weights and needs to persist
        bool gemm_trans_wei = _aux_mem[GemmAsmPretransposedRHS].size > 0;
        gemm_trans_wei      = _mm_gemm != nullptr ? _aux_mem[GemmTransposed1xWRHS].size > 0 : gemm_trans_wei;
        gemm_trans_wei      = _mm_gemmlowp != nullptr ? _aux_mem[GemmLowpTransposed1xWRHS].size > 0 : gemm_trans_wei;

        _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped),
                                               gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent,
                                               _weights_reshaped.total_size());
    }
    _aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
}

Status CpuGemmConv2d::has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
                                   const ITensorInfo         *src,
                                   const ITensorInfo         *weights,
                                   const ITensorInfo         *biases,
                                   const ITensorInfo         *dst,
                                   const PadStrideInfo       &conv_info,
                                   const WeightsInfo         &weights_info,
                                   const Size2D              &dilation,
                                   const ActivationLayerInfo &act_info,
                                   const bool                 enable_fast_math)
{
    const DataLayout   data_layout   = src->data_layout();
    const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);
    unsigned int       conv_w        = 0;
    unsigned int       conv_h        = 0;
    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
                                                 kernel_height, conv_info, dilation);

    const CpuGemmConv2d::SkipInfo skip_info =
        CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);

    const bool         skip_im2col   = skip_info.skip_im2col;
    const bool         skip_col2im   = skip_info.skip_col2im;
    const unsigned int gemm_3d_depth = skip_col2im ? conv_h : 0;
    const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;

    /** @section note_CpuGemmConv2d_weight_use_in_has_opt_impl Which weights tensor should we use for has_opt_impl
     *
     *  For the pretranspose_B flag, this shares a similar problem and thus the same decision as that of
     *  @ref note_CpuGemmConv2d_weight_use_in_configure
     *
     *  But for the weights, we shall always use the original instead of reshaped weights here
     */
    const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */, gemm_3d_depth,
                                        skip_im2col /* Reinterpret the input as 3D if im2col is skipped */, false,
                                        GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info,
                                        fixed_format, weights_info.weight_format(), true /* pretranspose_B */);

    return CpuGemm::has_opt_impl(expected_weight_format, src, weights, biases, dst, gemm_info);
}

Status CpuGemmConv2d::validate(const ITensorInfo         *src,
                               const ITensorInfo         *weights,
                               const ITensorInfo         *biases,
                               const ITensorInfo         *dst,
                               const PadStrideInfo       &conv_info,
                               const WeightsInfo         &weights_info,
                               const Size2D              &dilation,
                               const ActivationLayerInfo &act_info,
                               bool                       enable_fast_math,
                               unsigned int               num_groups)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
                                                         DataType::BFLOAT16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
                                                         DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16,
                                                         DataType::F16, DataType::F32);

    if (!is_fixed_format(weights_info.weight_format()))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
    }

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported");

    const DataLayout data_layout = src->data_layout();
    const DataType   data_type   = src->data_type();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);

    TensorInfo         im2col_reshaped_info{};
    TensorInfo         info_gemm{};
    TensorInfo         tmp_info{};
    TensorInfo         weights_reshaped_info{};
    const ITensorInfo *gemm_input_to_use  = src;
    const ITensorInfo *gemm_output_to_use = dst;
    const ITensorInfo *weights_to_use     = weights;

    const bool append_bias  = false;
    const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
    const bool is_bf16      = data_type == DataType::BFLOAT16;

    // Get convolved dimensions
    unsigned int conv_w = 0;
    unsigned int conv_h = 0;

    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width), src->dimension(idx_height), kernel_width,
                                                 kernel_height, conv_info, dilation);

    // Check if GEMM3D is supported
    const CpuGemmConv2d::SkipInfo skip_info =
        CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);
    const bool skip_im2col = skip_info.skip_im2col, skip_col2im = skip_info.skip_col2im;

    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel));
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    // Validate biases
    if (biases != nullptr)
    {
        if (is_quantized)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
        }
        else if (is_bf16)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
        }
        ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != dst->dimension(idx_channel));
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    unsigned int mat_weights_cols = weights->dimension(idx_kernels);
    unsigned int mat_weights_rows =
        weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel);

    // Initialize reshaped weights
    initialize_reshaped_weight_info(*weights, weights_reshaped_info);
    // No need to call CpuReshape::validate() or CpuTranspose::validate() as the dst info is auto-configured from the
    // src
    weights_to_use = &weights_reshaped_info;

    if (!skip_im2col)
    {
        const int block_by        = arm_compute::block_by(weights_info.weight_format());
        int       input_pad_right = 0;
        if (block_by > 1)
        {
            input_pad_right =
                (src->dimension(idx_channel) % block_by) == 0 ? 0 : block_by - (src->dimension(idx_channel) % block_by);
            mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) *
                               (weights->dimension(idx_channel) + input_pad_right);
        }

        // Create tensor info for im2col reshaped inputs
        // For CPU, the batch size is on the fourth dimension
        TensorShape shape_im2col = src->tensor_shape();
        shape_im2col.set(0, mat_weights_rows);
        shape_im2col.set(1, conv_w * conv_h);
        shape_im2col.set(2, 1);

        im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
        im2col_reshaped_info.set_quantization_info(src->quantization_info());
        ARM_COMPUTE_RETURN_ON_ERROR(
            kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height),
                                               conv_info, append_bias, dilation, num_groups, input_pad_right));
        gemm_input_to_use = &im2col_reshaped_info;
    }

    // Create temporary GEMM output tensor in case we cannot skip col2im
    const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
    if (!skip_col2im)
    {
        TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);
        info_gemm = TensorInfo(shape_gemm, 1, output_data_type);
    }
    else
    {
        info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type);
    }
    info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
    gemm_output_to_use      = &info_gemm;
    const bool fixed_format = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;

    // See note_CpuGemmConv2d_weight_use_in_configure regarding the choice of the weights
    ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info,
                                            enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col, fixed_format,
                                            weights_info.weight_format()));

    // Validate Col2Im/ReshapeLayer
    if (!skip_col2im && (data_layout == DataLayout::NCHW))
    {
        ARM_COMPUTE_RETURN_ON_ERROR(
            kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h)));
    }

    return Status{};
}

void CpuGemmConv2d::run(ITensorPack &tensors)
{
    prepare(tensors);

    auto src               = tensors.get_const_tensor(ACL_SRC_0);
    auto dst               = tensors.get_tensor(ACL_DST);
    auto gemm_input_to_use = src;

    CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
    CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);

    bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0);
    if (!_skip_im2col)
    {
        // Run input reshaping
        unsigned int hint_dim            = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
        unsigned int x_dim               = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH);
        unsigned int hint_dim_iterations = _im2col_kernel->window().num_iterations(hint_dim);
        unsigned int x_dim_iterations    = _im2col_kernel->window().num_iterations(x_dim);
        if (hint_dim_iterations < NEScheduler::get().num_threads() && x_dim_iterations > hint_dim_iterations)
        {
            hint_dim = x_dim;
        }
        ITensorPack pack = {{TensorType::ACL_SRC, src}, {TensorType::ACL_DST, im2col_output.get()}};
        NEScheduler::get().schedule_op(_im2col_kernel.get(), hint_dim, _im2col_kernel->window(), pack);
        gemm_input_to_use = im2col_output.get();
    }

    // Handle the case where output has top/bottom padding
    const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst;
    Tensor         gemm3d;
    _gemm_output_3d.extend_padding(out_to_use->info()->padding());
    gemm3d.allocator()->soft_init(_gemm_output_3d);
    gemm3d.allocator()->import_memory(out_to_use->buffer());
    auto gemm_output_to_use = gemm_output.get();

    if (_skip_im2col)
    {
        gemm_output_to_use = &gemm3d;
    }
    if (_skip_col2im && !out_has_padding)
    {
        gemm_output_to_use = dst;
    }

    ITensorPack gemm_pack = tensors;
    gemm_pack.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
    gemm_pack.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
    // Allocate reshaped weights if required
    auto weights = gemm_pack.get_const_tensor(TensorType::ACL_SRC_1);
    ARM_COMPUTE_ERROR_ON_NULLPTR(weights);
    // Re-interpreted weights. Only tensor shape is changed. Only memory import, no allocation
    const bool use_reinterpreted_wei = (_run_wt && _wt_method == WeightTransformMethod::ReinterpretThenTranspose);
    CpuAuxTensorHandler reinterpreted_wei(
        _weights_reshaped, *weights,
        /* import only if we chose the ReinterpretThenTranspose path, because otherwise the weight may have been freed */
        !use_reinterpreted_wei);

    const bool          use_reshaped_wei = (_run_wt && (_wt_method == WeightTransformMethod::ReshapeThenTranspose ||
                                               _wt_method == WeightTransformMethod::FusedReshapeAndTranspose));
    CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors,
                                     false /* pack_inject */, !use_reshaped_wei /* bypass_alloc */,
                                     !use_reshaped_wei /* bypass_import */
    );
    // Update the weights to use if it has been reshaped
    if (use_reinterpreted_wei)
    {
        gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, reinterpreted_wei.get());
    }
    else if (use_reshaped_wei)
    {
        gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
    }

    // Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions
    _is_quantized ? _mm_gemmlowp->run(gemm_pack) : _mm_gemm->run(gemm_pack);

    // Reshape output matrix
    if (!_skip_col2im)
    {
        if (_data_layout == DataLayout::NCHW)
        {
            ITensorPack pack = {{TensorType::ACL_SRC, gemm_output.get()}, {TensorType::ACL_DST, dst}};
            NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack);
        }
        else
        {
            ITensorPack pack = {{TensorType::ACL_SRC, gemm_output_to_use}, {TensorType::ACL_DST, dst}};
            _reshape->run(pack);
        }
    }
    else if (out_has_padding)
    {
        ITensorPack pack = {{TensorType::ACL_SRC, gemm_output_to_use}, {TensorType::ACL_DST, dst}};
        _reshape->run(pack);
    }
}

void CpuGemmConv2d::prepare(ITensorPack &tensors)
{
    if (!_is_prepared)
    {
        auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
        // Determine which weights reshape path to take
        // Note that this decision can only occur at prepare instead of configure because it relies on the presence of
        // any holes in the weight tensor, which may change after configure (e.g. from extending padding)
        if (_run_wt)
        {
            _wt_method = get_wt_method(*(weights->info()));
            switch (_wt_method)
            {
                case (WeightTransformMethod::FusedReshapeAndTranspose):
                {
                    ARM_COMPUTE_LOG_INFO_WITH_FUNCNAME_ACL("Perform weight transformation: FusedReshapeAndTranspose");
                    _weights_reshape_and_transpose_kernel = std::make_unique<kernels::CpuWeightsReshapeKernel>();
                    _weights_reshape_and_transpose_kernel->configure(weights->info(), nullptr, &_weights_reshaped);
                    break;
                }
                case (WeightTransformMethod::ReshapeThenTranspose):
                {
                    ARM_COMPUTE_LOG_INFO_WITH_FUNCNAME_ACL("Perform weight transformation: ReshapeThenTranspose");
                    _weights_reshape = std::make_unique<CpuReshape>();
                    _weights_reshape->configure(weights->info(), &_weights_reshaped);
                    break;
                }
                case (WeightTransformMethod::ReinterpretThenTranspose):
                {
                    ARM_COMPUTE_LOG_INFO_WITH_FUNCNAME_ACL("Perform weight transformation: ReinterpretThenTranspose");
                    // Nothing to configure
                    break;
                }
                default:
                {
                    ARM_COMPUTE_ERROR("Unsupported weight transform method");
                }
            }
        }
        else
        {
            ARM_COMPUTE_LOG_INFO_WITH_FUNCNAME_ACL("No weight transformation is performed");
        }
        ITensorPack gemm_pack = tensors;
        // Allocate reshaped weights if required
        CpuAuxTensorHandler reinterpreted_wei(
            _weights_reshaped,
            *weights); // Re-interpreted weights. Only tensor shape is changed. No allocation
        CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors);
        // Run weights reshape if required
        if (_run_wt)
        {
            switch (_wt_method)
            {
                case (WeightTransformMethod::FusedReshapeAndTranspose):
                {
                    ITensorPack pack = {{TensorType::ACL_SRC, weights}, {TensorType::ACL_DST, reshaped_wei.get()}};
                    NEScheduler::get().schedule_op(_weights_reshape_and_transpose_kernel.get(), Window::DimW,
                                                   _weights_reshape_and_transpose_kernel->window(), pack);
                    weights->mark_as_unused();
                    gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
                    break;
                }
                case (WeightTransformMethod::ReshapeThenTranspose):
                {
                    ITensorPack pack = {{TensorType::ACL_SRC, weights}, {TensorType::ACL_DST, reshaped_wei.get()}};
                    _weights_reshape->run(pack);
                    weights->mark_as_unused();
                    gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
                    break;
                }
                case (WeightTransformMethod::ReinterpretThenTranspose):
                {
                    gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, reinterpreted_wei.get());
                    // Nothing to run
                    break;
                }
                default:
                {
                    ARM_COMPUTE_ERROR("Unsupported weight transform method");
                }
            }
        }
        _is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack);

        _is_prepared = true;
    }
}
experimental::MemoryRequirements CpuGemmConv2d::workspace() const
{
    return _aux_mem;
}
bool CpuGemmConv2d::isVarWeightsKernel() const
{
    return _mm_gemm && _mm_gemm->isVarWeightsKernel();
}
} // namespace cpu
} // namespace arm_compute