aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemmConv2d.cpp
blob: 39b410d609355518fec1469f86adf3b1829349c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
/*
 * Copyright (c) 2021-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/operators/CpuGemmConv2d.h"

#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"

#include "src/common/utils/Log.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/kernels/CpuCol2ImKernel.h"
#include "src/cpu/kernels/CpuIm2ColKernel.h"
#include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
#include "src/cpu/operators/CpuGemm.h"
#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
#include "src/cpu/operators/CpuGemmLowpOutputStage.h"
#include "src/cpu/operators/CpuReshape.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"

#include <set>
#include <tuple>

using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::experimental;

namespace arm_compute
{
namespace cpu
{
CpuGemmConv2d::SkipInfo CpuGemmConv2d::skip_im_col_info(const ITensorInfo *src, const ITensorInfo *weights, const PadStrideInfo &conv_info,
                                                        const Size2D &dilation, const ActivationLayerInfo &act_info)
{
    const DataLayout   data_layout   = src->data_layout();
    const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);
    unsigned int       conv_w        = 0;
    unsigned int       conv_h        = 0;
    std::tie(conv_w, conv_h)         = scaled_dimensions(src->dimension(idx_width),
                                                         src->dimension(idx_height),
                                                         kernel_width,
                                                         kernel_height,
                                                         conv_info,
                                                         dilation);
    const bool skip_im2col           = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);

    if(skip_im2col)
    {
        const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ true))));
        if(skip_col2im)
        {
            return { true, true };
        }
    }
    else
    {
        const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ false))));
        if(skip_col2im)
        {
            return { false, true };
        }
    }

    // Default case when we cannot reinterpret the input and output as 3D.
    return { false, false };
}

CpuGemmConv2d::CpuGemmConv2d()
    : _weights_reshape_kernel(nullptr), _im2col_kernel(), _mm_gemm(), _mm_gemmlowp(), _col2im_kernel(), _reshape(), _im2col_output(), _weights_reshaped(), _gemm_output(), _gemm_output_3d(),
      _data_layout(DataLayout::NCHW), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count)
{
}
CpuGemmConv2d::~CpuGemmConv2d() = default;

void CpuGemmConv2d::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act_info,
                                 bool enable_fast_math, int gemm_3d_depth, bool fixed_format, arm_compute::WeightFormat weight_format)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
    ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth, _skip_im2col, fixed_format, weight_format));

    // Create GEMMInfo structure
    const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
                                         gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
                                         false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, fixed_format, weight_format);

    // Supported activations in GEMM
    const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
                                                                               ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
                                                                               ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
                                                                             };

    if(_is_quantized)
    {
        TensorInfo tmp_src{ *src };
        TensorInfo tmp_weights{ *weights };
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo        iqinfo    = src->quantization_info();
        const QuantizationInfo        wqinfo    = weights->quantization_info();
        const QuantizationInfo        oqinfo    = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
        const UniformQuantizationInfo uiqinfo   = iqinfo.uniform();
        const UniformQuantizationInfo uoqinfo   = oqinfo.uniform();
        const DataType                data_type = src->data_type();

        tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset));
        if(!is_data_type_quantized_per_channel(tmp_weights.data_type()))
        {
            const UniformQuantizationInfo uwqinfo = wqinfo.uniform();
            tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset));
        }

        // Merge activation with output stage
        PixelValue type_min{};
        PixelValue type_max{};
        std::tie(type_min, type_max) = get_min_max(data_type);
        int32_t min_activation       = type_min.get<int32_t>();
        int32_t max_activation       = type_max.get<int32_t>();

        if(supported_acts.count(act_info.activation()) != 0)
        {
            std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
        }

        GEMMLowpOutputStageInfo output_info;
        output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
        output_info.gemmlowp_offset          = uoqinfo.offset;
        output_info.gemmlowp_min_bound       = min_activation;
        output_info.gemmlowp_max_bound       = max_activation;
        output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL);
        quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info);

        _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
        _mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false, enable_fast_math, false, act_info, fixed_format,
                                                                              weight_format));

        auto mm_mem_req = _mm_gemmlowp->workspace();
        for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
        {
            _aux_mem[cont] = mm_mem_req[cont];
        }
    }
    else
    {
        // Configure matrix multiply function
        _mm_gemm = std::make_unique<CpuGemm>();
        _mm_gemm->configure(src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
        auto mm_mem_req = _mm_gemm->workspace();
        for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
        {
            _aux_mem[cont] = mm_mem_req[cont];
        }
    }
}

Status CpuGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
                                  const ActivationLayerInfo &act_info, bool enable_fast_math, int gemm_3d_depth, bool skip_im2col, bool fixed_format, arm_compute::WeightFormat weight_format)
{
    const DataType data_type             = src->data_type();
    const bool     is_quantized          = is_data_type_quantized_asymmetric(data_type);
    const bool     is_activation_enabled = act_info.enabled();

    // Create GEMMInfo structure
    const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
                                        gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
                                        false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, fixed_format, weight_format);

    if(is_quantized)
    {
        // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
        // Extract and negate input and weights offset
        const QuantizationInfo       &iqinfo  = src->quantization_info();
        const QuantizationInfo       &wqinfo  = weights->quantization_info();
        const QuantizationInfo       &oqinfo  = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
        const UniformQuantizationInfo uoqinfo = oqinfo.uniform();

        // Merge activation with output stage
        PixelValue type_min{};
        PixelValue type_max{};
        std::tie(type_min, type_max) = get_min_max(data_type);
        int32_t min_activation       = type_min.get<int32_t>();
        int32_t max_activation       = type_max.get<int32_t>();

        const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
                                                                                   ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
                                                                                 };
        if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
        {
            std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
        }

        GEMMLowpOutputStageInfo output_info;
        output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
        output_info.gemmlowp_offset          = uoqinfo.offset;
        output_info.gemmlowp_min_bound       = min_activation;
        output_info.gemmlowp_max_bound       = max_activation;
        output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
        ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info));

        // Perform validation step on GEMMLowp
        std::unique_ptr<ITensorInfo> input_qa   = src->clone();
        std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
        input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset));
        weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset));

        return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info, false, enable_fast_math,
                                                                                                               false, act_info));
    }
    else
    {
        // Perform validation step on Matrix multiply function
        return CpuGemm::validate(src, weights, biases, dst, 1.0f, 1.0f, gemm_info);
    }
}

Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo *input_info, const ITensorInfo *weights_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col)
{
    const DataType     data_type = input_info->data_type();
    const unsigned int mult_y    = skip_im2col ? 1U : gemm_3d_depth;
    const unsigned int mult_z    = skip_im2col ? gemm_3d_depth : 1U;

    // Set dummy tensor shapes for the validation
    const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info());
    const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info());
    const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info());

    return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false, gemm_3d_depth, skip_im2col);
}

void CpuGemmConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
                              const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_UNUSED(num_groups, weights_info);
    ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src,
                                                       weights,
                                                       biases,
                                                       dst,
                                                       conv_info,
                                                       weights_info,
                                                       dilation,
                                                       act_info,
                                                       enable_fast_math,
                                                       num_groups));
    ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, weights_info, dilation, act_info, enable_fast_math, num_groups);

    const DataType   data_type   = src->data_type();
    const DataLayout data_layout = src->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);

    _is_prepared  = weights_info.retain_internal_weights();
    _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
    _data_layout  = data_layout;
    _skip_im2col  = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);

    const ITensorInfo *gemm_input_to_use  = src;
    ITensorInfo       *gemm_output_to_use = dst;

    // Get convolved dimensions
    unsigned int conv_w      = 0;
    unsigned int conv_h      = 0;
    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
                                                 src->dimension(idx_height),
                                                 kernel_width,
                                                 kernel_height,
                                                 conv_info,
                                                 dilation);

    ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
                             "Output shape does not match the expected one");

    // Check if GEMM3D is supported
    const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);
    _skip_im2col                            = skip_info.skip_im2col;
    _skip_col2im                            = skip_info.skip_col2im;

    // Get parameters from conv_info
    unsigned int stride_x        = 0;
    unsigned int stride_y        = 0;
    std::tie(stride_x, stride_y) = conv_info.stride();

    unsigned int mat_weights_cols = weights->dimension(idx_kernels);

    // _weights_reshaped will be auto configured in the kernel.
    // Just append biases and do not transpose 1xW as it will be reshaped in CpuGemm
    _weights_reshape_kernel = std::make_unique<kernels::CpuWeightsReshapeKernel>();
    _weights_reshape_kernel->configure(weights, nullptr, &_weights_reshaped);
    _weights_reshaped.set_quantization_info(weights->quantization_info());

    // Create tensor to store im2col reshaped inputs
    if(!_skip_im2col)
    {
        const int    block_by        = arm_compute::block_by(weights_info.weight_format());
        unsigned int input_pad_right = 0;
        if(block_by > 1)
        {
            input_pad_right = (src->dimension(idx_channel) % block_by) == 0 ? 0 : block_by - (src->dimension(idx_channel) % block_by);
        }
        // Configure
        _im2col_kernel = std::make_unique<kernels::CpuIm2ColKernel>();
        _im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation, num_groups, input_pad_right);

        // Update GEMM input
        gemm_input_to_use = &_im2col_output;
    }

    // Create temporary GEMM output tensor in case we cannot skip col2im
    const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
    if(!_skip_col2im)
    {
        TensorShape shape_gemm;

        // Calculate GEMM output shape
        shape_gemm = _im2col_output.tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);

        _gemm_output = TensorInfo(shape_gemm, 1, output_data_type);
        _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
        _gemm_output_3d = TensorInfo(_gemm_output);

        // Update GEMM output
        gemm_output_to_use = &_gemm_output;
    }
    else
    {
        _gemm_output_3d = TensorInfo(*dst);
        _gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true);
        _gemm_output = TensorInfo(_gemm_output_3d);

        // Update GEMM output
        gemm_output_to_use = &_gemm_output_3d;
    }

    // Configure GEMM
    // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
    const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
    const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
    configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math, gemm_3d_depth, fixed_format, weights_info.weight_format());

    if(!_skip_col2im && _data_layout == DataLayout::NCHW)
    {
        // Configure col2im
        _col2im_kernel = std::make_unique<kernels::CpuCol2ImKernel>();
        _col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h));
    }
    else
    {
        // Configure reshape layer
        _reshape = std::make_unique<CpuReshape>();
        _reshape->configure(gemm_output_to_use, dst);
    }

    // Check if GEMM transforms weights
    // Modernise through COMPMID-4535
    bool gemm_trans_wei = _aux_mem[1].size > 0;                                            // Asm Pretranspose
    gemm_trans_wei      = _mm_gemm != nullptr ? _aux_mem[3].size > 0 : gemm_trans_wei;     // Tranpose RHS
    gemm_trans_wei      = _mm_gemmlowp != nullptr ? _aux_mem[5].size > 0 : gemm_trans_wei; // Transpose RHS

    // Check lifetime
    _aux_mem[Im2ColOutput]    = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
    _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _weights_reshaped.total_size());
    _aux_mem[GemmOutput]      = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
}

Status CpuGemmConv2d::has_opt_impl(arm_compute::WeightFormat &expected_weight_format, const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
                                   const PadStrideInfo &conv_info,
                                   const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, const bool enable_fast_math)
{
    const DataLayout   data_layout   = src->data_layout();
    const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);
    unsigned int       conv_w        = 0;
    unsigned int       conv_h        = 0;
    std::tie(conv_w, conv_h)         = scaled_dimensions(src->dimension(idx_width),
                                                         src->dimension(idx_height),
                                                         kernel_width,
                                                         kernel_height,
                                                         conv_info,
                                                         dilation);

    const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
                                                                              dilation, act_info);

    const bool         skip_im2col   = skip_info.skip_im2col;
    const bool         skip_col2im   = skip_info.skip_col2im;
    const unsigned int gemm_3d_depth = skip_col2im ? conv_h : 0;
    const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
    const GEMMInfo     gemm_info     = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
                                                gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
                                                false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, fixed_format, weights_info.weight_format());

    return CpuGemm::has_opt_impl(expected_weight_format, src, weights, biases, dst, gemm_info);
}

Status CpuGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
                               const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32);

    if(!is_fixed_format(weights_info.weight_format()))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
    }

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported");

    const DataLayout data_layout = src->data_layout();
    const DataType   data_type   = src->data_type();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    const unsigned int kernel_width  = weights->dimension(idx_width);
    const unsigned int kernel_height = weights->dimension(idx_height);

    TensorInfo         im2col_reshaped_info{};
    TensorInfo         info_gemm{};
    TensorInfo         tmp_info{};
    TensorInfo         weights_reshaped_info{};
    const ITensorInfo *gemm_input_to_use  = src;
    const ITensorInfo *gemm_output_to_use = dst;
    const ITensorInfo *weights_to_use     = weights;

    const bool append_bias  = false;
    const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
    const bool is_bf16      = data_type == DataType::BFLOAT16;

    // Get convolved dimensions
    unsigned int conv_w = 0;
    unsigned int conv_h = 0;

    std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
                                                 src->dimension(idx_height),
                                                 kernel_width,
                                                 kernel_height,
                                                 conv_info,
                                                 dilation);

    // Check if GEMM3D is supported
    const CpuGemmConv2d::SkipInfo skip_info   = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
                                                                                dilation, act_info);
    const bool                    skip_im2col = skip_info.skip_im2col, skip_col2im = skip_info.skip_col2im;

    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel));
    ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);

    // Validate biases
    if(biases != nullptr)
    {
        if(is_quantized)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
        }
        else if(is_bf16)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
        }
        ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != dst->dimension(idx_channel));
        ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
    }

    unsigned int mat_weights_cols = weights->dimension(idx_kernels);
    unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel);

    weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, append_bias), 1, weights->data_type());
    weights_reshaped_info.set_quantization_info(weights->quantization_info());
    weights_to_use = &weights_reshaped_info;

    if(!skip_im2col)
    {
        const int block_by        = arm_compute::block_by(weights_info.weight_format());
        int       input_pad_right = 0;
        if(block_by > 1)
        {
            input_pad_right  = (src->dimension(idx_channel) % block_by) == 0 ? 0 : block_by - (src->dimension(idx_channel) % block_by);
            mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * (weights->dimension(idx_channel) + input_pad_right);
        }

        // Create tensor info for im2col reshaped inputs
        // For CPU, the batch size is on the fourth dimension
        TensorShape shape_im2col = src->tensor_shape();
        shape_im2col.set(0, mat_weights_rows);
        shape_im2col.set(1, conv_w * conv_h);
        shape_im2col.set(2, 1);

        im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
        im2col_reshaped_info.set_quantization_info(src->quantization_info());
        ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation, num_groups, input_pad_right));
        gemm_input_to_use = &im2col_reshaped_info;
    }

    // Create temporary GEMM output tensor in case we cannot skip col2im
    const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
    if(!skip_col2im)
    {
        TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
        shape_gemm.set(0, mat_weights_cols);
        shape_gemm.set(1, conv_w * conv_h);
        info_gemm = TensorInfo(shape_gemm, 1, output_data_type);
    }
    else
    {
        info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type);
    }
    info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
    gemm_output_to_use      = &info_gemm;
    const bool fixed_format = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;

    ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col, fixed_format,
                                            weights_info.weight_format()));

    // Validate Col2Im/ReshapeLayer
    if(!skip_col2im && (data_layout == DataLayout::NCHW))
    {
        ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h)));
    }

    return Status{};
}

void CpuGemmConv2d::run(ITensorPack &tensors)
{
    prepare(tensors);

    auto src               = tensors.get_const_tensor(ACL_SRC_0);
    auto dst               = tensors.get_tensor(ACL_DST);
    auto gemm_input_to_use = src;

    CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
    CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);
    CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false);

    bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0);
    if(!_skip_im2col)
    {
        // Run input reshaping
        unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
        ITensorPack  pack  =
        {
            { TensorType::ACL_SRC, src },
            { TensorType::ACL_DST, im2col_output.get() }
        };
        NEScheduler::get().schedule_op(_im2col_kernel.get(), y_dim, _im2col_kernel->window(), pack);
        gemm_input_to_use = im2col_output.get();
    }

    // Handle the case where output has top/bottom padding
    const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst;
    Tensor         gemm3d;
    _gemm_output_3d.extend_padding(out_to_use->info()->padding());
    gemm3d.allocator()->soft_init(_gemm_output_3d);
    gemm3d.allocator()->import_memory(out_to_use->buffer());
    auto gemm_output_to_use = gemm_output.get();

    if(_skip_im2col)
    {
        gemm_output_to_use = &gemm3d;
    }
    if(_skip_col2im && !out_has_padding)
    {
        gemm_output_to_use = dst;
    }

    // Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions
    ITensorPack pack_mm = tensors;
    pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
    if(!this->isVarWeightsKernel())
    {
        pack_mm.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
    }
    pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
    if(_is_quantized)
    {
        // Run gemmlowp
        _mm_gemmlowp->run(pack_mm);
    }
    else
    {
        // Run gemm
        _mm_gemm->run(pack_mm);
    }

    // Reshape output matrix
    if(!_skip_col2im)
    {
        if(_data_layout == DataLayout::NCHW)
        {
            ITensorPack pack =
            {
                { TensorType::ACL_SRC, gemm_output.get() },
                { TensorType::ACL_DST, dst }
            };
            NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack);
        }
        else
        {
            ITensorPack pack =
            {
                { TensorType::ACL_SRC, gemm_output_to_use },
                { TensorType::ACL_DST, dst }
            };
            _reshape->run(pack);
        }
    }
    else if(out_has_padding)
    {
        ITensorPack pack =
        {
            { TensorType::ACL_SRC, gemm_output_to_use },
            { TensorType::ACL_DST, dst }
        };
        _reshape->run(pack);
    }
}

void CpuGemmConv2d::prepare(ITensorPack &tensors)
{
    if(!_is_prepared)
    {
        // Variable weights executions that use fixed-format kernels
        // need no reshaping of the weights.
        if(this->isVarWeightsKernel())
        {
            _is_quantized ? _mm_gemmlowp->prepare(tensors) : _mm_gemm->prepare(tensors);
            _is_prepared = true;
            return;
        }

        // Run weights reshaping and mark original weights tensor as unused
        CpuAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors);
        auto                weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
        ITensorPack         pack    =
        {
            { TensorType::ACL_SRC, weights },
            { TensorType::ACL_DST, weights_reshaped.get() }
        };
        NEScheduler::get().schedule_op(_weights_reshape_kernel.get(), 3, _weights_reshape_kernel->window(), pack);
        weights->mark_as_unused();
        ITensorPack gemm_pack = tensors;
        gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
        _is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack);
        _is_prepared = true;
    }
}
experimental::MemoryRequirements CpuGemmConv2d::workspace() const
{
    return _aux_mem;
}
bool CpuGemmConv2d::isVarWeightsKernel() const
{
    return _mm_gemm && _mm_gemm->isVarWeightsKernel();
}
} // namespace cpu
} // namespace arm_compute