aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemm.cpp
blob: 905e86c185dd11b3db892f094d81ea5c7c92a843 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
 * Copyright (c) 2021-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/operators/CpuGemm.h"

#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"

#include "src/common/utils/Log.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"

using namespace arm_compute::experimental;
using namespace arm_compute::misc::shape_calculator;

namespace arm_compute
{
namespace cpu
{
namespace
{
cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
{
    cpu::AsmGemmInfo asm_info;
    asm_info.method                  = cpu::AsmConvMethod::Im2Col;
    asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
    asm_info.depth_output_gemm3d     = info.depth_output_gemm3d();
    asm_info.activation_info         = info.activation_info();
    asm_info.fast_mode               = info.fast_math();
    asm_info.fixed_format            = info.fixed_format();
    asm_info.weight_format           = info.weight_format();
    asm_info.accumulate              = info.accumulate();
    asm_info.transpose_b =
        info.pretranspose_B(); // The "pretranspose_B" flag here is not the same as the pretranspose_B_array method. The flag here signals to pretranspose_B_array method if we want to perform additional transpose on B before the pretranspose_B_array method

    return asm_info;
}
} // namespace

void CpuGemm::configure(const ITensorInfo *a,
                        const ITensorInfo *b,
                        const ITensorInfo *c,
                        ITensorInfo       *d,
                        float              alpha,
                        float              beta,
                        const GEMMInfo    &gemm_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
    ARM_COMPUTE_ERROR_THROW_ON(CpuGemm::validate(a, b, c, d, alpha, beta, gemm_info));
    ARM_COMPUTE_LOG_PARAMS(a, b, c, d, alpha, beta, gemm_info);

    const cpu::AsmGemmInfo asm_info  = init_assembly_metadata(gemm_info);
    const bool             is_c_bias = beta == 1 && c != nullptr;
    const bool             run_optimised =
        bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, (is_c_bias) ? c : nullptr, d, asm_info)) &&
        (c == nullptr || beta == 0.f || beta == 1.f) && // Optimized GeMM doesn't support beta coefficient.
        !(!b->are_values_constant() &&
          b->tensor_shape().z() > 1); // Disable batch matmul as optimized GeMM handles batching differently.

    // Check if we need to reshape the matrix B only on the first run
    _is_prepared                      = false;
    _reshape_b_only_on_first_run      = b->are_values_constant();
    _run_vector_matrix_multiplication = a->dimension(1) < 2;
    _run_alpha_scale                  = alpha != 1.f;
    _run_bias_addition                = is_c_bias;
    _run_addition                     = beta != 0 && beta != 1 && c != nullptr;
    _run_activation =
        gemm_info.activation_info().enabled() &&
        (!run_optimised ||
         (run_optimised && !cpu::CpuGemmAssemblyDispatch::is_activation_supported(gemm_info.activation_info())));

    if (run_optimised)
    {
        _run_interleave_transpose   = false;
        const ITensorInfo *c_to_use = is_c_bias ? c : nullptr;
        _asm_glue                   = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
        _asm_glue->configure(a, b, c_to_use, d, asm_info);
        ARM_COMPUTE_ERROR_ON(!_asm_glue->is_configured());

        const auto asm_mem_req = _asm_glue->workspace();
        for (unsigned int slot = 0; slot < asm_mem_req.size(); ++slot)
        {
            _aux_mem[slot] = asm_mem_req[slot];
        }

        // Scale product by alpha
        if (_run_alpha_scale)
        {
            _alpha_scale_func = std::make_unique<cpu::CpuActivation>();
            _alpha_scale_func->configure(
                d, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, alpha, 0.f));
        }
    }
    else
    {
        _run_interleave_transpose = !_run_vector_matrix_multiplication;
        // Pick output tensor in case bias addition should be performed
        ITensorInfo *gemm_output_to_use = (_run_bias_addition) ? &_tmp_d : d;
        // Pick b tensor in case pretranspose should be performed
        const ITensorInfo *b_to_use = b;

        _mm_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixMultiplyKernel>();

        // Configure rhs pretranspose
        if (gemm_info.pretranspose_B())
        {
            _pretranspose_b_func = std::make_unique<CpuTranspose>();
            _pretranspose_b_func->configure(b_to_use, &_pretransposed_b);
            MemoryLifetime lifetime;
            if (_reshape_b_only_on_first_run)
            {
                if (_run_interleave_transpose)
                {
                    // PreTransposedRHS tensor is only used in prepare(), but is then succeeded by Transposed1xWRHS
                    // So PreTransposedRHS can be freed inside prepare()
                    lifetime = MemoryLifetime::Prepare;
                }
                else
                {
                    // PreTransposedRHS tensor is only used in prepare(), but is the final transformation of rhs
                    // So PreTransposedRHS needs to persist beyond prepare()
                    lifetime = MemoryLifetime::Persistent;
                }
            }
            else
            {
                // PreTransposedRHS tensor is always used in run() and doesn't need to persist
                lifetime = MemoryLifetime::Temporary;
            }
            _aux_mem[PreTransposedRHS] =
                MemoryInfo(offset_int_vec(PreTransposedRHS), lifetime, _pretransposed_b.total_size());
            b_to_use = &_pretransposed_b;
        }

        // Select between GEMV and GEMM
        if (_run_vector_matrix_multiplication)
        {
            // Configure the matrix multiply kernel
            _mm_kernel->configure(a, b_to_use, gemm_output_to_use, alpha, false);
        }
        else
        {
            ARM_COMPUTE_ERROR_ON(!_run_interleave_transpose);
            // Configure interleave kernel
            _interleave_kernel = std::make_unique<cpu::kernels::CpuGemmInterleave4x4Kernel>();
            _interleave_kernel->configure(a, &_tmp_a);
            _aux_mem[InterleavedLHS] =
                MemoryInfo(offset_int_vec(InterleavedLHS), MemoryLifetime::Temporary, _tmp_a.total_size());

            // Configure rhs transpose1xw kernel
            _transpose1xW_b_kernel = std::make_unique<cpu::kernels::CpuGemmTranspose1xWKernel>();
            _transpose1xW_b_kernel->configure(b_to_use, &_tmp_b);
            _aux_mem[Transposed1xWRHS] =
                MemoryInfo(offset_int_vec(Transposed1xWRHS), MemoryLifetime::Persistent, _tmp_b.total_size());

            // Use a and b here instead of _tmp_a and _tmp_b because CpuGemmMatrixMultiplyKernel requires the original m,n,k in case of interleaved a and transposed1xw b
            const int m = a->dimension(1);
            const int n = b_to_use->dimension(0);
            const int k = a->dimension(0);

            // Configure matrix multiplication kernel
            _mm_kernel->configure(&_tmp_a, &_tmp_b, gemm_output_to_use, alpha, _run_interleave_transpose,
                                  GEMMReshapeInfo(m, n, k));
        }

        if (_run_bias_addition)
        {
            _add_bias = std::make_unique<cpu::CpuAdd>();
            _add_bias->configure(gemm_output_to_use, c, d, ConvertPolicy::SATURATE);
            _aux_mem[TempResult] =
                MemoryInfo(offset_int_vec(TempResult), MemoryLifetime::Temporary, _tmp_d.total_size());
        }
    }

    // Configure matrix addition kernel
    if (_run_addition)
    {
        _ma_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixAdditionKernel>();
        _ma_kernel->configure(c, d, beta);
    }

    // Configure activation
    if (_run_activation)
    {
        _activation_func = std::make_unique<cpu::CpuActivation>();
        _activation_func->configure(d, nullptr, gemm_info.activation_info());
    }
}

Status CpuGemm::validate(const ITensorInfo *a,
                         const ITensorInfo *b,
                         const ITensorInfo *c,
                         const ITensorInfo *d,
                         float              alpha,
                         float              beta,
                         const GEMMInfo    &gemm_info)
{
    ARM_COMPUTE_UNUSED(alpha);
    // When using accumulation(in place summation), for now, the only supported values for alpha and beta are 1 respectively 0.
    // Do the appropriate checks before proceeding.
    if (gemm_info.accumulate())
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(alpha != 1, "Accumulation is not supported when alpha is different from 1");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(
            (beta != 0 && c != nullptr),
            "Accumulation is not supported when beta is different from 0 with a non-null bias matrix c");
    }

    const bool is_c_bias    = beta == 1 && c != nullptr;
    const bool run_addition = c != nullptr && beta != 0 && beta != 1;
    // Check if we should use the pretransposed_b or original b
    // TODO: COMPMID-6597
    // Note that this check should only apply to the non-optimized path. The reason we brought this at the beginning
    // instead of only for the fallback path is because of the checks performed below, between here and the run_optimised decision
    // We should simplify this by
    //   1. Moving the checks between "fix-start" and "fix-end" into their corresponding ops / kernels (e.g. the weights format checks can and should be moved into CpuGemmAssemblyDispatch)
    //   2. Moving this b_to_use check back into the non-optimized path
    TensorInfo pretransposed_b  = b->clone()->set_tensor_shape(misc::shape_calculator::compute_transposed_shape(*b));
    const ITensorInfo *b_to_use = gemm_info.pretranspose_B() ? &pretransposed_b : b;
    // TODO: COMPMID-6597 fix-start

    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::BFLOAT16, DataType::F16, DataType::F32);

    if (is_fixed_format_fast_math(gemm_info.weight_format()))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(a, DataType::F32);
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(b_to_use, DataType::BFLOAT16);
    }
    else
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b_to_use);
    }

    const int block_by = arm_compute::block_by(gemm_info.weight_format());
    // test if im2col has changed the dimensions that are needed for padding
    if (a->dimension(0) != b_to_use->dimension(1) && block_by > 1)
    {
        // have to verify bias
        const size_t dim0_sz = a->dimension(0);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(
            (dim0_sz % block_by) != 0,
            ("The matrix A number of columns must be a multiple of block_by=" + std::to_string(block_by)).c_str());
        // a->dimension(0) = kernel_area * input_channel + kernel_area * input_pad_right
        // b_to_use->dimension(1) = kernel_area * input_channel
        // a->dimension(0) = b_to_use->dimension(1) + kernel_area * input_pad_right
        const size_t input_pad_right = (dim0_sz - b_to_use->dimension(1)) % block_by;
        const size_t kernel_area     = (dim0_sz - b_to_use->dimension(1)) / input_pad_right;
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(
            (dim0_sz - kernel_area * input_pad_right) != b_to_use->dimension(1),
            "The product AB is defined only if A number of columns and B number of rows are related");
    }
    else
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(
            a->dimension(0) != b_to_use->dimension(1),
            "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
    }

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
    if (a->data_type() != DataType::BFLOAT16)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, d);
    }

    if (run_addition)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0);
        ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d());
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(c, d);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1),
                                        "The C matrix must have the same number of rows as the matrix A");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(b_to_use->dimension(0) != c->dimension(0),
                                        "The C matrix must have the same number of columns as the matrix B");
    }

    if (d->total_size() != 0)
    {
        // For fixed format we are expecting some kind of blocked format for B/RHS so the dimension won't necessarily match the result matrix any more.
        ARM_COMPUTE_RETURN_ERROR_ON(!gemm_info.fixed_format() && b_to_use->dimension(0) != d->dimension(0));
        if (gemm_info.depth_output_gemm3d() != 0)
        {
            if (gemm_info.reinterpret_input_as_3d())
            {
                ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
                ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != d->dimension(2));
            }
            else
            {
                ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1) * d->dimension(2));
            }
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
        }
    }
    // TODO: COMPMID-6597 fix-end

    // Check if we need to run the optimized assembly kernel
    cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);

    // Note we use b instead of b_to_use here because asm_info also captures the pretranspose_b() flag
    // so we pass the original b to CpuGemmAssemblyDispatch
    const bool run_optimised =
        bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, is_c_bias ? c : nullptr, d, asm_info)) &&
        (c == nullptr || beta == 0.f || beta == 1.f) && // Optimized GeMM doesn't support beta coefficient.
        !(!b->are_values_constant() &&
          b->tensor_shape().z() > 1); // Disable batch matmul as optimized GeMM handles batching differently.

    if (!run_optimised)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(),
                                        "CpuGemm cannot reinterpret the input tensor as 3D");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0,
                                        "CpuGemm cannot reinterpret the output tensor as 3D");

        // Check if the first input tensor is a vector.
        const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
        // Check if we need to reshape the matrix A and matrix B
        const bool run_interleave_transpose = !run_vector_matrix_multiplication;

        // Arguments used by GEMMReshapeInfo
        // If we pass the matrix A and matrix B reshaped to CpuGemmMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GEMMReshapeInfo
        // in order to know how the matrices have been reshaped
        const int m                         = a->dimension(1);
        const int n                         = b_to_use->dimension(0);
        const int k                         = a->dimension(0);
        int       mult_transpose1xW_width   = 1;
        int       mult_interleave4x4_height = 1;

        const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(
            m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d());

        const ITensorInfo *matrix_a_info = a;
        const ITensorInfo *matrix_b_info = b_to_use;

        TensorInfo tmp_a_info{};
        TensorInfo tmp_b_info{};
        TensorInfo tmp_output_info = *d->clone();

        if (run_interleave_transpose)
        {
            matrix_a_info = &tmp_a_info;
            matrix_b_info = &tmp_b_info;

            // Validate interleave kernel
            auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(
                                               *a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
            ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmInterleave4x4Kernel::validate(a, &tmp_a_info));

            // Validate transpose kernel
            auto_init_if_empty(tmp_b_info,
                               b_to_use->clone()->set_tensor_shape(
                                   compute_transpose1xW_with_element_size_shape(*b_to_use, mult_transpose1xW_width)));
            ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmTranspose1xWKernel::validate(b_to_use, &tmp_b_info));
        }

        // Validate matrix multiply
        auto_init_if_empty(tmp_output_info,
                           matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(
                               *matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info)));
        ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixMultiplyKernel::validate(
            matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info));

        if (is_c_bias)
        {
            ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuAdd::validate(&tmp_output_info, c, d, ConvertPolicy::SATURATE));
        }
    }

    // Validate matrix addition kernel
    if (run_addition)
    {
        ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixAdditionKernel::validate(c, d, beta));
    }

    // Validate activation
    const ActivationLayerInfo &activation = gemm_info.activation_info();
    if (activation.enabled())
    {
        ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuActivation::validate(d, nullptr, activation));
    }

    return Status{};
}

void CpuGemm::run(ITensorPack &tensors)
{
    prepare(tensors);

    auto a = tensors.get_const_tensor(ACL_SRC_0);
    auto b = tensors.get_const_tensor(ACL_SRC_1);
    auto c = tensors.get_const_tensor(ACL_SRC_2);
    auto d = tensors.get_tensor(ACL_DST);

    if (_asm_glue && _asm_glue->is_configured())
    {
        // Pass c to asm dispatch only if it's the bias tensor
        ITensorPack asm_pack = tensors;
        asm_pack.add_const_tensor(ACL_SRC_2, _run_bias_addition ? c : nullptr);
        _asm_glue->run(asm_pack);
        if (_run_alpha_scale)
        {
            ITensorPack pack{{ACL_SRC, d}, {ACL_DST, d}};
            _alpha_scale_func->run(pack);
        }
    }
    else
    {
        CpuAuxTensorHandler interleaved_a(offset_int_vec(InterleavedLHS), _tmp_a, tensors, true);
        CpuAuxTensorHandler pretransposed_b(offset_int_vec(PreTransposedRHS), _pretransposed_b, tensors);
        CpuAuxTensorHandler transposed1xw_b(offset_int_vec(Transposed1xWRHS), _tmp_b, tensors, true);
        CpuAuxTensorHandler temp_d(offset_int_vec(TempResult), _tmp_d, tensors, true);

        ITensorPack mm_pack{{ACL_SRC_0, a}, {ACL_SRC_1, b}, {ACL_DST, (_run_bias_addition) ? temp_d.get() : d}};

        if (_run_interleave_transpose)
        {
            // Run interleave kernel
            ITensorPack interleave_pack{{ACL_SRC, a}, {ACL_DST, interleaved_a.get()}};
            NEScheduler::get().schedule_op(_interleave_kernel.get(), Window::DimY, _interleave_kernel->window(),
                                           interleave_pack);
            // Use reshaped matrices
            mm_pack.add_const_tensor(ACL_SRC_0, interleaved_a.get());
        }

        const ITensor *b_to_use = b;
        if (_pretranspose_b_func)
        {
            if (!_reshape_b_only_on_first_run)
            {
                // Run pretranspose kernel
                ITensorPack pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pretransposed_b.get()}};
                _pretranspose_b_func->run(pretranspose_pack);
            }
            b_to_use = pretransposed_b.get();
        }
        if (_run_interleave_transpose)
        {
            if (!_reshape_b_only_on_first_run)
            {
                // Run transpose1xw kernel
                ITensorPack transpose_pack{{ACL_SRC, b_to_use}, {ACL_DST, transposed1xw_b.get()}};
                NEScheduler::get().schedule_op(_transpose1xW_b_kernel.get(), Window::DimY,
                                               _transpose1xW_b_kernel->window(), transpose_pack);
            }
            b_to_use = transposed1xw_b.get();
        }
        // Use reshaped matrices
        mm_pack.add_const_tensor(ACL_SRC_1, b_to_use);

        NEScheduler::get().schedule_op(_mm_kernel.get(),
                                       _run_vector_matrix_multiplication ? Window::DimX : Window::DimY,
                                       _mm_kernel->window(), mm_pack);

        // Run bias addition kernel
        if (_run_bias_addition)
        {
            ITensorPack pack{{ACL_SRC_0, temp_d.get()}, {ACL_SRC_1, c}, {ACL_DST, d}};
            _add_bias->run(pack);
        }
    }

    // Run matrix addition kernel
    if (_run_addition)
    {
        ITensorPack c_add_pack{{ACL_SRC, c}, {ACL_DST, d}};
        NEScheduler::get().schedule_op(_ma_kernel.get(), Window::DimY, _ma_kernel->window(), c_add_pack);
    }

    // Run activation function
    if (_run_activation)
    {
        ITensorPack pack{{ACL_SRC, d}, {ACL_DST, d}};
        _activation_func->run(pack);
    }
}

void CpuGemm::prepare(ITensorPack &tensors)
{
    if (!_is_prepared)
    {
        if (_asm_glue && _asm_glue->is_configured())
        {
            _asm_glue->prepare(tensors);
        }
        else if (_reshape_b_only_on_first_run)
        {
            const ITensor      *b        = tensors.get_const_tensor(ACL_SRC_1);
            const ITensor      *b_to_use = b;
            CpuAuxTensorHandler pretransposed_b(
                offset_int_vec(PreTransposedRHS), _pretransposed_b, tensors,
                false /*pack_inject: no need to inject into tensors*/,
                _pretranspose_b_func ==
                    nullptr /*bypass_alloc: no need to allocate if _pretranspose_b_func is not run*/);
            CpuAuxTensorHandler transposed1xw_b(offset_int_vec(Transposed1xWRHS), _tmp_b, tensors,
                                                false /*pack_inject*/, !_run_interleave_transpose /*bypass_alloc*/);

            if (_pretranspose_b_func)
            {
                // Run pretranspose kernel
                ITensorPack pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pretransposed_b.get()}};
                _pretranspose_b_func->run(pretranspose_pack);
                b_to_use = pretransposed_b.get();
            }
            if (_run_interleave_transpose)
            {
                // Run transpose kernel
                ITensorPack transpose_pack{{ACL_SRC, b_to_use}, {ACL_DST, transposed1xw_b.get()}};
                NEScheduler::get().schedule_op(_transpose1xW_b_kernel.get(), Window::DimY,
                                               _transpose1xW_b_kernel->window(), transpose_pack);
            }
        }
        _is_prepared = true;
    }
}

experimental::MemoryRequirements CpuGemm::workspace() const
{
    return _aux_mem;
}

Status CpuGemm::has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
                             const ITensorInfo         *a,
                             const ITensorInfo         *b,
                             const ITensorInfo         *c,
                             const ITensorInfo         *d,
                             const GEMMInfo            &gemm_info)
{
    const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);

    return CpuGemmAssemblyDispatch::has_opt_impl(expected_weight_format, a, b, c, d, asm_info);
}

bool CpuGemm::isVarWeightsKernel() const
{
    return _asm_glue && _asm_glue->isVarWeightsKernel();
}
} // namespace cpu
} // namespace arm_compute