aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/softmax/generic/neon/impl.cpp
blob: 31baf8a9dfa1c381971c7e2ae53218c66ae7d3c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
 * Copyright (c) 2021-2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/kernels/softmax/generic/neon/impl.h"

#include "support/SaturateCast.h"

namespace arm_compute
{
namespace cpu
{
template <typename T, bool IS_LOG>
void neon_softmax_x_quantized(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window)
{
    ARM_COMPUTE_UNUSED(axis);

    static_assert(std::is_same<T, qasymm8_t>::value || std::is_same<T, qasymm8_signed_t>::value,
                  "quantized type should be either qasymm8_t or qasymm8_signed_t.");

    const int input_width = in->info()->valid_region().shape.x();

    const float       scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
    const float32x4_t scale_beta_vec = vdupq_n_f32(scale_beta);

    Iterator in_it(in, window);
    Iterator out_it(out, window);

    constexpr int vec_size = 16;

#ifndef __aarch64__
    const int sum_stages = log2(vec_size >> 1);
#endif // __aarch64__

    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    execute_window_loop(
        window,
        [&](const Coordinates &)
        {
            /* Get pointers */
            const T *in_ptr  = reinterpret_cast<const T *>(in_it.ptr());
            T       *out_ptr = reinterpret_cast<T *>(out_it.ptr());
            float   *tmp_ptr = reinterpret_cast<float *>(tmp);

            T max_val;

            /* Compute Max */
            {
                // Init max value
                auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});
                int  x       = 0;

                for (; x <= (input_width - vec_size); x += vec_size)
                {
                    const auto current_value = wrapper::vloadq(in_ptr + x);
                    vec_max                  = wrapper::vmax(vec_max, current_value);
                }

#ifdef __aarch64__
                max_val = wrapper::vmaxv(vec_max);
#else  // __aarch64__
                auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max));

                for (int i = 0; i < sum_stages; ++i)
                {
                    carry_max = wrapper::vpmax(carry_max, carry_max);
                }

                max_val      = wrapper::vgetlane(carry_max, 0);
#endif // __aarch64__

                // Compute left-over elements
                for (; x < input_width; ++x)
                {
                    max_val = std::max(*(in_ptr + x), max_val);
                }
            } // Compute Max

            float sum_transformed{};

            /* Compute exponentials and sum */
            {
                /* Get max value */
                const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{});

                /* Init sum to zero */
                float32x4x4_t vec_sum = {
                    vdupq_n_f32(0.f),
                    vdupq_n_f32(0.f),
                    vdupq_n_f32(0.f),
                    vdupq_n_f32(0.f),
                };

                /* Loop over row and compute exponentials and sum */
                int x = 0;
                for (; x <= (input_width - vec_size); x += vec_size)
                {
                    auto vec_elements              = wrapper::vloadq(in_ptr + x);
                    vec_elements                   = wrapper::vqsub(vec_max, vec_elements);
                    float32x4x4_t vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);

                    if (IS_LOG)
                    {
                        vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
                        vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
                        vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
                        vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
                        vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
                        vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
                        vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
                        vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
                    }
                    else
                    {
                        vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
                        vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
                        vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
                        vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
                        vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
                        vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
                        vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
                        vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
                    }

                    vst4q_f32(tmp_ptr + x, vec_elements_flt);
                }

                /* Reduce sum */
                const float32x4_t sum_16_byte =
                    vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3]));

                float sum;

#ifdef __aarch64__
                sum = wrapper::vaddv(sum_16_byte);
#else  // __aarch64__
                auto sum_res = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte));
                sum_res      = vpadd_f32(sum_res, sum_res);
                sum          = wrapper::vgetlane(sum_res, 0);
#endif // __aarch64__

                /* Run remaining elements */
                for (; x < input_width; ++x)
                {
                    float element{};
                    if (IS_LOG)
                    {
                        element = (max_val - in_ptr[x]) * scale_beta;
                        sum += std::exp(element);
                    }
                    else
                    {
                        element = std::exp((max_val - in_ptr[x]) * scale_beta);
                        sum += element;
                    }

                    tmp_ptr[x] = element;
                }

                if (!IS_LOG)
                {
                    sum_transformed = 256.f / sum;
                }
                else
                {
                    sum_transformed = std::log(sum);
                }
            } // Compute exponentials and sum

            /* Normalize exponentials */
            {
                constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;

                const float32x4_t sum_vec = vdupq_n_f32(sum_transformed);

                /* Loop over row and compute softmax */
                int x = 0;
                for (; x <= (input_width - vec_size); x += vec_size)
                {
                    using int_vec_type   = wrapper::traits::neon_vector_t<T, 16>;
                    float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x);
                    int_vec_type  normalized_value{};
                    if (IS_LOG)
                    {
                        const float32x4x4_t sub = {
                            vsubq_f32(vec_in.val[0], sum_vec),
                            vsubq_f32(vec_in.val[1], sum_vec),
                            vsubq_f32(vec_in.val[2], sum_vec),
                            vsubq_f32(vec_in.val[3], sum_vec),
                        };
                        normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
                    }
                    else
                    {
                        float32x4x4_t mul = {
                            vmulq_f32(vec_in.val[0], sum_vec),
                            vmulq_f32(vec_in.val[1], sum_vec),
                            vmulq_f32(vec_in.val[2], sum_vec),
                            vmulq_f32(vec_in.val[3], sum_vec),
                        };

                        if (is_qasymm8_signed)
                        {
                            const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
                            mul.val[0]            = wrapper::vsub(mul.val[0], offset_vec);
                            mul.val[1]            = wrapper::vsub(mul.val[1], offset_vec);
                            mul.val[2]            = wrapper::vsub(mul.val[2], offset_vec);
                            mul.val[3]            = wrapper::vsub(mul.val[3], offset_vec);
                        }

                        normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
                    }
                    wrapper::vstore(out_ptr + x, normalized_value);
                }
                /* Run remaining elements */
                for (; x < input_width; ++x)
                {
                    if (IS_LOG)
                    {
                        out_ptr[x] = utils::cast::saturate_cast<T>(tmp_ptr[x] - sum_transformed);
                    }
                    else
                    {
                        out_ptr[x] = utils::cast::saturate_cast<T>((tmp_ptr[x] * sum_transformed) -
                                                                   (is_qasymm8_signed ? 128.f : 0));
                    }
                }
            } // Normalize exponentials
        },
        in_it, out_it);
}

template <typename T, bool IS_LOG>
void neon_softmax_non_x_quantized(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window)
{
    static_assert(std::is_same<T, qasymm8_t>::value || std::is_same<T, qasymm8_signed_t>::value,
                  "quantized type should be either qasymm8_t or qasymm8_signed_t.");

    const float       scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
    const float32x4_t scale_beta_vec = vdupq_n_f32(scale_beta);

    Iterator in_it(in, window);
    Iterator out_it(out, window);

    /** SIMD vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    constexpr int      vec_size        = 16;
    const ITensorInfo *in_info         = in->info();
    const ITensorInfo *out_info        = out->info();
    const int          x_width         = in_info->valid_region().shape.x();
    const int          in_axis_stride  = in_info->strides_in_bytes()[axis];
    const int          out_axis_stride = out_info->strides_in_bytes()[axis];
    const int          tmp_axis_stride = in_axis_stride;
    const int          axis_width      = in_info->dimension(axis);
    const int          end_actual      = std::min(window[0].end(), x_width);

    execute_window_loop(
        window,
        [&](const Coordinates &winCoords)
        {
            const bool vector_exceeds_bounds = ((winCoords[0] + vec_size) > end_actual);

            int num_remaining         = (end_actual - winCoords[0]);
            int num_remaining_full    = num_remaining / 4;
            int num_remaining_partial = num_remaining % 4;

            /* Get pointers */
            const uint8_t *in_ptr  = in_it.ptr();
            uint8_t       *out_ptr = out_it.ptr();
            uint8_t       *tmp_ptr = reinterpret_cast<uint8_t *>(tmp);

            auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});

            /* Compute Max */
            {
                if (!vector_exceeds_bounds)
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        const auto current_value =
                            wrapper::vloadq((i * in_axis_stride) + reinterpret_cast<const T *>(in_ptr));
                        vec_max = wrapper::vmax(vec_max, current_value);
                    }
                }
                else
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        const T *const base_ptr_in = ((i * in_axis_stride) + reinterpret_cast<const T *>(in_ptr));
                        int            j           = 0;
                        for (; j < num_remaining; ++j)
                        {
                            const T current_value = *(base_ptr_in + j);
                            vec_max[j]            = std::max(vec_max[j], current_value);
                        }
                    }
                }
            } // Compute Max

            float32x4x4_t vec_sum_transformed = {
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
            };

            /* Compute exponentials and sum */
            {
                /* Init sum to zero */
                float32x4x4_t vec_sum = vec_sum_transformed;

                auto vec_elements = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});

                float32x4x4_t vec_elements_flt;

                if (!vector_exceeds_bounds)
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        vec_elements     = wrapper::vloadq((i * in_axis_stride) + reinterpret_cast<const T *>(in_ptr));
                        vec_elements     = wrapper::vqsub(vec_max, vec_elements);
                        vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);

                        if (IS_LOG)
                        {
                            vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
                            vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
                            vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
                            vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
                            vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
                            vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
                            vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
                            vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
                        }
                        else
                        {
                            vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
                            vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
                            vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
                            vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
                            vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
                            vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
                            vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
                            vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
                        }
                        vst4q_f32((i * tmp_axis_stride) + reinterpret_cast<float *>(tmp_ptr), vec_elements_flt);
                    }

                    auto vec_256 = wrapper::vdup_n(static_cast<float32_t>(256.f), ExactTagType{});
                    if (!IS_LOG)
                    {
                        vec_sum_transformed.val[0] = wrapper::vdiv(vec_256, vec_sum.val[0]);
                        vec_sum_transformed.val[1] = wrapper::vdiv(vec_256, vec_sum.val[1]);
                        vec_sum_transformed.val[2] = wrapper::vdiv(vec_256, vec_sum.val[2]);
                        vec_sum_transformed.val[3] = wrapper::vdiv(vec_256, vec_sum.val[3]);
                    }
                    else
                    {
                        vec_sum_transformed.val[0] = wrapper::vlog(vec_sum.val[0]);
                        vec_sum_transformed.val[1] = wrapper::vlog(vec_sum.val[1]);
                        vec_sum_transformed.val[2] = wrapper::vlog(vec_sum.val[2]);
                        vec_sum_transformed.val[3] = wrapper::vlog(vec_sum.val[3]);
                    }
                }
                else
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        const T *const base_ptr_in  = (i * in_axis_stride) + reinterpret_cast<const T *>(in_ptr);
                        auto           vec_elements = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
                        //vec_els is functionally redundant but is needed as a workaround for a toolchain bug.
                        std::vector<T> vec_els(16);

                        for (int k = 0; k < num_remaining_full; ++k)
                        {
                            for (int j = 0; j < 4; ++j)
                            {
                                vec_els[k * 4 + j] = *(base_ptr_in + (4 * k + j));
                            }
                        }
                        for (int j = 0; j < num_remaining_partial; ++j)
                        {
                            vec_els[num_remaining_full * 4 + j] = *(base_ptr_in + (4 * num_remaining_full + j));
                        }
                        for (int q = 0; q < 16; q++)
                        {
                            vec_elements[q] = vec_els[q];
                        }
                        vec_elements                   = wrapper::vqsub(vec_max, vec_elements);
                        float32x4x4_t vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);

                        if (IS_LOG)
                        {
                            vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
                            vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
                            vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
                            vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
                            vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
                            vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
                            vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
                            vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
                        }
                        else
                        {
                            vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
                            vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
                            vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
                            vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
                            vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
                            vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
                            vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
                            vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
                        }

                        float *const base_ptr_tmp = (i * tmp_axis_stride) + reinterpret_cast<float *>(tmp_ptr);
                        for (int k = 0; k < num_remaining_full; ++k)
                        {
                            for (int j = 0; j < 4; ++j)
                            {
                                *(base_ptr_tmp + (4 * k + j)) = vec_elements_flt.val[k][j];
                            }
                        }

                        for (int j = 0; j < num_remaining_partial; ++j)
                        {
                            *(base_ptr_tmp + (4 * num_remaining_full + j)) =
                                vec_elements_flt.val[num_remaining_full][j];
                        }
                    }

                    auto vec_256 = wrapper::vdup_n(static_cast<float32_t>(256), ExactTagType{});
                    if (!IS_LOG)
                    {
                        vec_sum_transformed.val[0] = wrapper::vdiv(vec_256, vec_sum.val[0]);
                        vec_sum_transformed.val[1] = wrapper::vdiv(vec_256, vec_sum.val[1]);
                        vec_sum_transformed.val[2] = wrapper::vdiv(vec_256, vec_sum.val[2]);
                        vec_sum_transformed.val[3] = wrapper::vdiv(vec_256, vec_sum.val[3]);
                    }
                    else
                    {
                        vec_sum_transformed.val[0] = wrapper::vlog(vec_sum.val[0]);
                        vec_sum_transformed.val[1] = wrapper::vlog(vec_sum.val[1]);
                        vec_sum_transformed.val[2] = wrapper::vlog(vec_sum.val[2]);
                        vec_sum_transformed.val[3] = wrapper::vlog(vec_sum.val[3]);
                    }
                }
            } // Compute exponentials and sum

            /* Normalize exponentials */
            {
                constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;
                if (!vector_exceeds_bounds)
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        using int_vec_type   = wrapper::traits::neon_vector_t<T, 16>;
                        float32x4x4_t vec_in = vld4q_f32((i * tmp_axis_stride) + reinterpret_cast<float *>(tmp_ptr));

                        int_vec_type normalized_value{};

                        if (IS_LOG)
                        {
                            const float32x4x4_t sub = {
                                vsubq_f32(vec_in.val[0], vec_sum_transformed.val[0]),
                                vsubq_f32(vec_in.val[1], vec_sum_transformed.val[1]),
                                vsubq_f32(vec_in.val[2], vec_sum_transformed.val[2]),
                                vsubq_f32(vec_in.val[3], vec_sum_transformed.val[3]),
                            };
                            normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
                        }
                        else
                        {
                            float32x4x4_t mul = {
                                vmulq_f32(vec_in.val[0], vec_sum_transformed.val[0]),
                                vmulq_f32(vec_in.val[1], vec_sum_transformed.val[1]),
                                vmulq_f32(vec_in.val[2], vec_sum_transformed.val[2]),
                                vmulq_f32(vec_in.val[3], vec_sum_transformed.val[3]),
                            };

                            if (is_qasymm8_signed)
                            {
                                const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
                                mul.val[0]            = wrapper::vsub(mul.val[0], offset_vec);
                                mul.val[1]            = wrapper::vsub(mul.val[1], offset_vec);
                                mul.val[2]            = wrapper::vsub(mul.val[2], offset_vec);
                                mul.val[3]            = wrapper::vsub(mul.val[3], offset_vec);
                            }

                            normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
                        }
                        wrapper::vstore((i * out_axis_stride) + reinterpret_cast<T *>(out_ptr), normalized_value);
                    }
                }
                else
                {
                    int i = 0;
                    for (; i < axis_width; ++i)
                    {
                        T *const     base_ptr_out = (i * out_axis_stride) + reinterpret_cast<T *>(out_ptr);
                        float *const base_ptr_tmp = (i * tmp_axis_stride) + reinterpret_cast<float *>(tmp_ptr);
                        if (IS_LOG)
                        {
                            for (int k = 0; k < num_remaining_full; ++k)
                            {
                                for (int j = 0; j < 4; ++j)
                                {
                                    *(base_ptr_out + (4 * k + j)) = utils::cast::saturate_cast<T>(
                                        (*(base_ptr_tmp + (4 * k + j)) - vec_sum_transformed.val[k][j]));
                                }
                            }
                            for (int j = 0; j < num_remaining_partial; ++j)
                            {
                                *(base_ptr_out + (4 * num_remaining_full + j)) =
                                    utils::cast::saturate_cast<T>(*(base_ptr_tmp + (4 * num_remaining_full + j)) -
                                                                  vec_sum_transformed.val[num_remaining_full][j]);
                            }
                        }
                        else
                        {
                            for (int k = 0; k < num_remaining_full; ++k)
                            {
                                for (int j = 0; j < 4; ++j)
                                {
                                    *(base_ptr_out + (4 * k + j)) = utils::cast::saturate_cast<T>(
                                        *(base_ptr_tmp + (4 * k + j)) * vec_sum_transformed.val[k][j] -
                                        (is_qasymm8_signed ? 128.f : 0));
                                }
                            }
                            for (int j = 0; j < num_remaining_partial; ++j)
                            {
                                *(base_ptr_out + (4 * num_remaining_full + j)) =
                                    utils::cast::saturate_cast<T>(*(base_ptr_tmp + (4 * num_remaining_full + j)) *
                                                                      vec_sum_transformed.val[num_remaining_full][j] -
                                                                  (is_qasymm8_signed ? 128.f : 0));
                            }
                        }
                    }
                }
            } // Normalize exponentials
        },
        in_it, out_it);
}

template void neon_softmax_x_quantized<qasymm8_signed_t, true>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_x_quantized<qasymm8_signed_t, false>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_x_quantized<qasymm8_t, true>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_x_quantized<qasymm8_t, false>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_non_x_quantized<qasymm8_signed_t, true>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_non_x_quantized<qasymm8_signed_t, false>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_non_x_quantized<qasymm8_t, true>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);

template void neon_softmax_non_x_quantized<qasymm8_t, false>(
    const ITensor *in, void *const tmp, ITensor *out, float beta, int axis, const Window &window);
} // namespace cpu
} // namespace arm_compute