aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/fp16.cpp
blob: 9d24d79afb9e182e3b801b4024e1cd733139b8e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/*
 * Copyright (c) 2021-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/cpu/kernels/pool2d/neon/impl.h"
#include "src/cpu/kernels/pool2d/neon/list.h"

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)

namespace arm_compute
{
namespace cpu
{
#ifdef ENABLE_NCHW_KERNELS

namespace
{
float16x4_t
read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
{
    float16_t  vec[4];
    const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
    for (int i = 0; i < 4; i++)
    {
        if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
        {
            vec[i] = *(ptr + i);
        }
        else
        {
            vec[i] = fval;
        }
    }
    return wrapper::vload(vec);
}
} // namespace

void pooling3_fp16_neon_nchw(const ITensor    *src,
                             ITensor          *dst0,
                             ITensor          *dst1,
                             PoolingLayerInfo &pool_info,
                             const Window     &window_src,
                             const Window     &window)
{
    ARM_COMPUTE_UNUSED(dst1);

    Iterator in(src, window_src);
    Iterator out(dst0, window);

    constexpr const int pool_size            = 3;
    const int           pool_pad_right       = pool_info.pad_stride_info.pad_right();
    const int           pool_pad_top         = pool_info.pad_stride_info.pad_top();
    const int           pool_pad_left        = pool_info.pad_stride_info.pad_left();
    const int           pool_pad_bottom      = pool_info.pad_stride_info.pad_bottom();
    int                 pool_stride_x        = 0;
    int                 pool_stride_y        = 0;
    std::tie(pool_stride_x, pool_stride_y)   = pool_info.pad_stride_info.stride();
    const int                  src_w         = src->info()->dimension(0);
    const int                  src_h         = src->info()->dimension(1);
    const int                  upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int                  upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float16_t            fp16_min      = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
    const float16_t            fill_value    = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
    const unsigned char *const src_top_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
    const unsigned char *const src_middle_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
    const unsigned char *const src_bottom_ptr =
        src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            const auto  x_val   = id.x() * pool_stride_x;
            const auto  y_val_0 = id.y() * pool_stride_y;
            const auto  y_val_1 = (id.y() * pool_stride_y) + 1;
            const auto  y_val_2 = (id.y() * pool_stride_y) + 2;
            float16x4_t top_data =
                read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
                                           reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
            float16x4_t middle_data = read_4_boundary_aware_fp16(
                src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
                reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
            float16x4_t bottom_data = read_4_boundary_aware_fp16(
                src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_2,
                reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
            float16x4_t res = {};

            // Get power of 2 in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                top_data    = vmul_f16(top_data, top_data);
                middle_data = vmul_f16(middle_data, middle_data);
                bottom_data = vmul_f16(bottom_data, bottom_data);
            }

            if (pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                const float scale = calculate_avg_scale_pool2d(
                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h,
                    pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                const float16x4_t scale_v = vdup_n_f16(scale);
                // Perform pooling
                const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
                res                        = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
                res                        = vmul_f16(vpadd_f16(res, res), scale_v);
            }
            else
            {
                const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
                res                        = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
                res                        = vpmax_f16(res, res);
            }

            // Calculate square-root in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                res = vsqrt_f16(res);
            }

            *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
        },
        in, out);
}
#endif // ENABLE_NCHW_KERNELS

void pooling2_f16_maxpool_indices(const ITensor    *src,
                                  ITensor          *dst0,
                                  ITensor          *dst1,
                                  PoolingLayerInfo &pool_info,
                                  const Window     &window_src,
                                  const Window     &window)
{
    const int window_start_x = window.x().start();
    const int window_end_x   = window.x().end();
    const int window_step_x  = 8;

    Window window_out = window;
    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator in(src, window_src);
    Iterator out(dst0, window_out);
    Iterator indices(dst1, window_out);

    const int pool_pad_top  = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left = pool_info.pad_stride_info.pad_left();

    int pool_stride_x                      = 0;
    int pool_stride_y                      = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();

    const int pad_right      = src->info()->padding().right;
    const int pad_left       = src->info()->padding().left;
    const int pad_horizontal = pad_right + pad_left;
    const int in_stride_y    = static_cast<int>(src->info()->strides_in_bytes().y());
    const int in_stride_z    = static_cast<int>(src->info()->strides_in_bytes().z());

    execute_window_loop(
        window_out,
        [&](const Coordinates &id)
        {
            const int idx_width    = id.y() * pool_stride_x;
            const int idx_height   = id.z() * pool_stride_y;
            const int pool_limit_y = pool_pad_top - idx_height;
            const int pool_limit_x = pool_pad_left - idx_width;

            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
            const int in_x0_offset =
                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
            const int in_x1_offset =
                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                (pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
            const int in_x2_offset =
                (pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
            const int in_x3_offset =
                (pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                (pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());

            int x_off = window_start_x;
            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
            {
                const auto  in_x0_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off;
                const auto  in_x1_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off;
                const auto  in_x2_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off;
                const auto  in_x3_ptr = reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off;
                const auto  v_x0      = vld1q_f16(in_x0_ptr);
                const auto  v_x1      = vld1q_f16(in_x1_ptr);
                const auto  v_x2      = vld1q_f16(in_x2_ptr);
                const auto  v_x3      = vld1q_f16(in_x3_ptr);
                float16x8_t vres      = vmaxq_f16(vmaxq_f16(v_x2, v_x3), vmaxq_f16(v_x0, v_x1));
                // Store result
                vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);

                const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
                                                                          pool_stride_y, DataLayout::NHWC);
                const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
                const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
                const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
                                           pad_horizontal * src->info()->tensor_shape()[1];
                const uint32_t   offset_x3    = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
                const uint32x4_t voffset_x0_0 = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
                const uint32x4_t voffset_x0_1 = {offset_x0 + 4, offset_x0 + 5, offset_x0 + 6, offset_x0 + 7};
                const uint16x8_t voffset_x0   = vcombine_u16(vmovn_u32(voffset_x0_0), vmovn_u32(voffset_x0_1));
                const uint32x4_t voffset_x1_0 = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
                const uint32x4_t voffset_x1_1 = {offset_x1 + 4, offset_x1 + 5, offset_x1 + 6, offset_x1 + 7};
                const uint16x8_t voffset_x1   = vcombine_u16(vmovn_u32(voffset_x1_0), vmovn_u32(voffset_x1_1));
                const uint32x4_t voffset_x2_0 = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
                const uint32x4_t voffset_x2_1 = {offset_x2 + 4, offset_x2 + 5, offset_x2 + 6, offset_x2 + 7};
                const uint16x8_t voffset_x2   = vcombine_u16(vmovn_u32(voffset_x2_0), vmovn_u32(voffset_x2_1));
                const uint32x4_t voffset_x3_0 = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
                const uint32x4_t voffset_x3_1 = {offset_x3 + 4, offset_x3 + 5, offset_x3 + 6, offset_x3 + 7};
                const uint16x8_t voffset_x3   = vcombine_u16(vmovn_u32(voffset_x3_0), vmovn_u32(voffset_x3_1));
                const uint16x8_t tmp_indices0 = vbslq_u16(vcgeq_f16(v_x0, v_x1), voffset_x0, voffset_x1);
                const uint16x8_t tmp_indices1 = vbslq_u16(vcgeq_f16(v_x2, v_x3), voffset_x2, voffset_x3);
                const uint16x8_t tmp_indices2 =
                    vbslq_u16(vcgeq_f16(vmaxq_f16(v_x0, v_x1), vmaxq_f16(v_x2, v_x3)), tmp_indices0, tmp_indices1);
                const uint32x4_t tmp_indeces3_0 = vmovl_u16(vget_low_u16(tmp_indices2));
                const uint32x4_t tmp_indeces3_1 = vmovl_u16(vget_high_u16(tmp_indices2));
                // Store indicies
                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indeces3_0);
                vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr() + 16) + x_off, tmp_indeces3_1);
            }

            // Left-overs loop
            for (; x_off < window_end_x; ++x_off)
            {
                const auto x0  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x0_offset) + x_off);
                const auto x1  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x1_offset) + x_off);
                const auto x2  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x2_offset) + x_off);
                const auto x3  = *(reinterpret_cast<const float16_t *>(in.ptr() + in_x3_offset) + x_off);
                float16_t  res = std::max(std::max(x2, x3), std::max(x0, x1));

                // Store result
                *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;

                const uint32_t offset_base = offset_no_padding<float16_t>(in.offset(), id, *src->info(), pool_stride_x,
                                                                          pool_stride_y, DataLayout::NHWC);
                const uint32_t offset_x0   = (uint32_t)offset_base / sizeof(float16_t) + x_off;
                const uint32_t offset_x1   = (uint32_t)offset_x0 + in_stride_y / sizeof(float16_t) - pad_horizontal;
                const uint32_t offset_x2   = (uint32_t)offset_x0 + in_stride_z / sizeof(float16_t) -
                                           pad_horizontal * src->info()->tensor_shape()[1];
                const uint32_t offset_x3 = (uint32_t)offset_x2 + in_stride_y / sizeof(float16_t) - pad_horizontal;
                const uint32_t tmp_idx0  = (x0 >= x1) ? offset_x0 : offset_x1;
                const uint32_t tmp_idx1  = (x2 >= x3) ? offset_x2 : offset_x3;
                const uint32_t tmp_idx2  = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;

                // Store indices
                *(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
            }
        },
        in, out, indices);
}
#ifdef ENABLE_NCHW_KERNELS

void pooling2_fp16_neon_nchw(const ITensor    *src,
                             ITensor          *dst0,
                             ITensor          *dst1,
                             PoolingLayerInfo &pool_info,
                             const Window     &window_src,
                             const Window     &window)
{
    if (pool_info.pool_type == PoolingType::MAX && dst1)
    {
        pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
    }
    else
    {
        Iterator      in(src, window_src);
        Iterator      out(dst0, window);
        constexpr int pool_size       = 2;
        const int     pool_pad_right  = pool_info.pad_stride_info.pad_right();
        const int     pool_pad_top    = pool_info.pad_stride_info.pad_top();
        const int     pool_pad_left   = pool_info.pad_stride_info.pad_left();
        const int     pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
        int           pool_stride_x, pool_stride_y = 0;
        std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
        const int       src_w                  = src->info()->dimension(0);
        const int       src_h                  = src->info()->dimension(1);
        const int       upper_bound_w          = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
        const int       upper_bound_h          = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
        const float16_t fp16_min               = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
        const float16_t fill_value             = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;

        const unsigned char *const src_top_ptr =
            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
        const unsigned char *const src_bottom_ptr =
            src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));

        execute_window_loop(
            window,
            [&](const Coordinates &id)
            {
                const auto in_top_ptr    = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
                const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());

                const auto  x_val       = id.x() * pool_stride_x;
                const auto  y_val_0     = id.y() * pool_stride_y;
                const auto  y_val_1     = (id.y() * pool_stride_y) + 1;
                float16x4_t top_data    = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
                                                                     y_val_0, in_top_ptr, fill_value);
                float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
                                                                     y_val_1, in_bottom_ptr, fill_value);
                float16x4_t res         = {};

                // Get power of 2 in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    top_data    = vmul_f16(top_data, top_data);
                    bottom_data = vmul_f16(bottom_data, bottom_data);
                }

                if (pool_info.pool_type != PoolingType::MAX)
                {
                    const float scale = calculate_avg_scale_pool2d(
                        pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w,
                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                    const float16x4_t scale_v = vdup_n_f16(scale);

                    const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
                    res                        = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
                }
                else
                {
                    const float16x4_t max_data = vmax_f16(top_data, bottom_data);
                    res                        = vpmax_f16(max_data, max_data);
                }

                // Calculate square-root in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    res = vsqrt_f16(res);
                }

                // Store result
                *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
            },
            in, out);
    }
}

void poolingMxN_fp16_neon_nchw(const ITensor    *src,
                               ITensor          *dst0,
                               ITensor          *dst1,
                               PoolingLayerInfo &pool_info,
                               const Window     &window_src,
                               const Window     &window)
{
    ARM_COMPUTE_UNUSED(dst1);
    Iterator in(src, window_src);
    Iterator out(dst0, window);

    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x                = 0;
    int       pool_stride_y                = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int       src_w                  = src->info()->dimension(0);
    const int       src_h                  = src->info()->dimension(1);
    const int       upper_bound_w          = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int       upper_bound_h          = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float16_t fp16_min               = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
    const float16_t fill_value             = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            float16_t res = 0.0f;

            if (pool_info.pool_type != PoolingType::MAX)
            {
                // Calculate scale
                const float16_t scale = calculate_avg_scale_pool2d(
                    pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
                    upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);

                // Perform pooling
                for (int y = 0; y < pool_size_y; ++y)
                {
                    for (int x = 0; x < pool_size_x; ++x)
                    {
                        const auto ptr = reinterpret_cast<const float16_t *>(
                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));

                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
                        float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;

                        if (pool_info.pool_type == PoolingType::L2)
                        {
                            data *= data;
                        }

                        res += data;
                    }
                }

                // Divide by scale
                res *= scale;
            }
            else // if max pooling
            {
                res = fp16_min;

                for (int y = 0; y < pool_size_y; ++y)
                {
                    for (int x = 0; x < pool_size_x; ++x)
                    {
                        const auto ptr = reinterpret_cast<const float16_t *>(
                            in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
                            (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));

                        const int idx  = x + id.x() * pool_stride_x - pool_pad_left;
                        const int idy  = y + id.y() * pool_stride_y - pool_pad_top;
                        float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
                        res            = std::max(res, data);
                    }
                }
            }

            // Calculate square-root in case of l2 pooling
            if (pool_info.pool_type == PoolingType::L2)
            {
                res = std::sqrt(res);
            }

            // Store result
            *(reinterpret_cast<float16_t *>(out.ptr())) = res;
        },
        in, out);
}
#endif // ENABLE_NCHW_KERNELS

void poolingMxN_fp16_neon_nhwc(const ITensor    *src,
                               ITensor          *dst0,
                               ITensor          *dst1,
                               PoolingLayerInfo &pool_info,
                               const Window     &window_src,
                               const Window     &window)
{
    if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX && dst1)
    {
        pooling2_f16_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
    }
    const int window_start_x = window.x().start();
    const int window_end_x   = window.x().end();
    const int window_step_x  = 8;

    Window window_out = window;
    window_out.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator in(src, window_src);
    Iterator out(dst0, window_out);

    const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
    const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
    const int pool_pad_right               = pool_info.pad_stride_info.pad_right();
    const int pool_pad_top                 = pool_info.pad_stride_info.pad_top();
    const int pool_pad_left                = pool_info.pad_stride_info.pad_left();
    const int pool_pad_bottom              = pool_info.pad_stride_info.pad_bottom();
    int       pool_stride_x                = 0;
    int       pool_stride_y                = 0;
    std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
    const int       upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
    const int       upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
    const float16_t min_value     = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
    float16x8_t     vres;

    execute_window_loop(
        window_out,
        [&](const Coordinates &id)
        {
            const int idx_width    = id.y() * pool_stride_x;
            const int idx_height   = id.z() * pool_stride_y;
            const int pool_limit_y = pool_pad_top - idx_height;
            const int pool_limit_x = pool_pad_left - idx_width;

            const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
            const int pool_end_y   = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
            const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
            const int pool_end_x   = std::min(pool_size_x, window_src.y().end() + pool_limit_x);

            int x_off = window_start_x;
            for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
            {
                if (pool_info.pool_type != PoolingType::MAX)
                {
                    // Calculate scale
                    const float scale = calculate_avg_scale_pool2d(
                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
                    const float16x8_t scale_v = vdupq_n_f16(scale);

                    // Perform pooling
                    vres = vdupq_n_f16(0.0f);
                    for (int y = pool_start_y; y < pool_end_y; ++y)
                    {
                        for (int x = pool_start_x; x < pool_end_x; ++x)
                        {
                            const float16x8_t data = vld1q_f16(
                                reinterpret_cast<const float16_t *>(
                                    in.ptr() +
                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
                                x_off);

                            // Get power of 2 in case of l2 pooling and accumulate
                            if (pool_info.pool_type == PoolingType::L2)
                            {
                                vres = vaddq_f16(vres, vmulq_f16(data, data));
                            }
                            else
                            {
                                vres = vaddq_f16(vres, data);
                            }
                        }
                    }
                    // Divide by scale
                    vres = vmulq_f16(vres, scale_v);
                }
                else
                {
                    vres = vdupq_n_f16(min_value);

                    for (int y = pool_start_y; y < pool_end_y; ++y)
                    {
                        for (int x = pool_start_x; x < pool_end_x; ++x)
                        {
                            const float16x8_t data = vld1q_f16(
                                reinterpret_cast<const float16_t *>(
                                    in.ptr() +
                                    (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                                    (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
                                x_off);
                            vres = vmaxq_f16(vres, data);
                        }
                    }
                }

                // Calculate square-root in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    float16x8_t sqrt_reciprocal = vrsqrteq_f16(vres);
                    vres = vmulq_f16(vres, vmulq_f16(vrsqrtsq_f16(vmulq_f16(vres, sqrt_reciprocal), sqrt_reciprocal),
                                                     sqrt_reciprocal));
                }

                // Store result
                vst1q_f16(reinterpret_cast<float16_t *>(out.ptr()) + x_off, vres);
            }

            // Left-overs loop
            for (; x_off < window_end_x; ++x_off)
            {
                float16_t res = 0.0f;

                if (pool_info.pool_type != PoolingType::MAX)
                {
                    // Calculate scale
                    const float16_t scale = calculate_avg_scale_pool2d(
                        pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
                        upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);

                    for (int y = pool_start_y; y < pool_end_y; ++y)
                    {
                        for (int x = pool_start_x; x < pool_end_x; ++x)
                        {
                            const float data =
                                *(reinterpret_cast<const float16_t *>(
                                      in.ptr() +
                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
                                  x_off);

                            // Get power of 2 in case of l2 pooling and accumulate
                            if (pool_info.pool_type == PoolingType::L2)
                            {
                                res += data * data;
                            }
                            else
                            {
                                res += data;
                            }
                        }
                    }

                    // Divide by scale
                    res *= scale;
                }
                else
                {
                    res = min_value;
                    for (int y = pool_start_y; y < pool_end_y; ++y)
                    {
                        for (int x = pool_start_x; x < pool_end_x; ++x)
                        {
                            const float16_t data =
                                *(reinterpret_cast<const float16_t *>(
                                      in.ptr() +
                                      (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
                                      (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
                                  x_off);
                            res = std::max(res, data);
                        }
                    }
                }

                // Calculate square-root in case of l2 pooling
                if (pool_info.pool_type == PoolingType::L2)
                {
                    res = std::sqrt(res);
                }

                // Store result
                *(reinterpret_cast<float16_t *>(out.ptr()) + x_off) = res;
            }
        },
        in, out);
}
} // namespace cpu
} // namespace arm_compute

#endif /* defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS) */