aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/l2normlayer/generic/neon/impl.h
blob: 6bd19299b77372b354dfaf641e56aaf96c07b309 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
 * Copyright (c) 2017-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_L2NORMLAYER_LIST_H
#define SRC_CORE_NEON_KERNELS_L2NORMLAYER_LIST_H

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"

#include "src/core/common/Registrars.h"
#include "src/core/NEON/wrapper/wrapper.h"

#include <cstddef>

namespace arm_compute
{
namespace cpu
{
template <typename T, int S>
void l2_normalize_x(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window)
{
    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;

    const int  window_step_x  = 16 / data_size_from_type(in->info()->data_type());
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input_it(in, win_collapsed);
    Iterator sum_it(sum, win_collapsed);
    Iterator output_it(out, win_collapsed);

    execute_window_loop(
        win_collapsed,
        [&](const Coordinates &)
        {
            const auto in_ptr  = reinterpret_cast<const T *>(input_it.ptr());
            const auto out_ptr = reinterpret_cast<T *>(output_it.ptr());

            const T    sum_value      = *reinterpret_cast<const T *>(sum_it.ptr());
            const T    norm_value     = static_cast<T>(1.f) / std::sqrt(std::max(sum_value, static_cast<T>(epsilon)));
            const auto vec_norm_value = wrapper::vdup_n(norm_value, ExactTagType{});

            // Compute elements over vector steps
            int x = window_start_x;
            for (; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                wrapper::vstore(out_ptr + x, wrapper::vmul(wrapper::vloadq(in_ptr + x), vec_norm_value));
            }

            // Compute left-over elements
            for (; x < window_end_x; ++x)
            {
                out_ptr[x] = in_ptr[x] * norm_value;
            }
        },
        input_it, sum_it, output_it);
}

template <typename T, int S>
void l2_normalize_yz(
    const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window, size_t axis)
{
    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;

    const int  window_step_x  = 16 / data_size_from_type(in->info()->data_type());
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Window window_sum(win);
    window_sum.set(axis, Window::Dimension(0, 0, 0));

    Iterator input_it(in, win);
    Iterator sum_it(sum, window_sum);
    Iterator output_it(out, win);

    const auto vec_eps = wrapper::vdup_n(static_cast<T>(epsilon), ExactTagType{});

    execute_window_loop(
        win,
        [&](const Coordinates &)
        {
            const auto in_ptr  = reinterpret_cast<const T *>(input_it.ptr());
            const auto sum_ptr = reinterpret_cast<const T *>(sum_it.ptr());
            const auto out_ptr = reinterpret_cast<T *>(output_it.ptr());

            // Compute elements over vector steps
            int x = window_start_x;
            for (; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto vec_norm_value = wrapper::vinvsqrt(wrapper::vmax(wrapper::vloadq(sum_ptr + x), vec_eps));
                wrapper::vstore(out_ptr + x, wrapper::vmul(wrapper::vloadq(in_ptr + x), vec_norm_value));
            }

            // Compute left-over elements
            for (; x < window_end_x; ++x)
            {
                const T norm_value = static_cast<T>(1.f) / std::sqrt(std::max(sum_ptr[x], static_cast<T>(epsilon)));
                out_ptr[x]         = in_ptr[x] * norm_value;
            }
        },
        input_it, sum_it, output_it);
}
} // namespace cpu
} // namespace arm_compute
#endif //SRC_CORE_NEON_KERNELS_L2NORMLAYER_LIST_H