aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/fuse_batch_normalization/generic/impl.h
blob: b9017600d6332355d3d03ef3108fd415f3e2d466 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
 * Copyright (c) 2021-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H
#define SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H

#include "arm_compute/core/Helpers.h"
#include "src/core/NEON/wrapper/wrapper.h"

namespace arm_compute
{
namespace cpu
{
template <typename T>
void fused_batch_normalization_conv(const ITensor *conv_weights, const ITensor *conv_bias, ITensor *fused_weights, ITensor *fused_bias,
                                    const ITensor *bn_mean, const ITensor *bn_var, const ITensor *bn_beta, const ITensor *bn_gamma, float epsilon, const Window &window)
{
    using ScalarType   = T;
    const int size     = 16 / conv_weights->info()->element_size();
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    const bool run_in_place_weights = (fused_weights == nullptr) || (fused_weights == conv_weights);
    const bool run_in_place_bias    = (fused_bias == nullptr) || (conv_bias != nullptr && fused_bias == conv_bias);

    // Set build options
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x  = size;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Iterator conv_w_in(conv_weights, win);
    Iterator conv_w_out(run_in_place_weights ? conv_weights : fused_weights, win);

    const auto conv_bias_in  = (conv_bias != nullptr ? reinterpret_cast<ScalarType *>(conv_bias->ptr_to_element(Coordinates(0, 0))) : nullptr);
    auto       conv_bias_out = (run_in_place_bias ? conv_bias_in : reinterpret_cast<ScalarType *>(fused_bias->ptr_to_element(Coordinates(0, 0))));

    const auto input_mean  = reinterpret_cast<const ScalarType *>(bn_mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const ScalarType *>(bn_var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = (bn_gamma != nullptr) ? reinterpret_cast<const ScalarType *>(bn_gamma->ptr_to_element(Coordinates(0, 0))) : nullptr;
    const auto input_beta  = (bn_beta != nullptr) ? reinterpret_cast<const ScalarType *>(bn_beta->ptr_to_element(Coordinates(0, 0))) : nullptr;

    auto       mean_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
    auto       var_vec     = wrapper::vdup_n(ScalarType(0), ExactTagType{});
    auto       gamma_vec   = wrapper::vdup_n(ScalarType(1), ExactTagType{});
    auto       beta_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
    auto       rvar_vec    = wrapper::vdup_n(ScalarType(0), ExactTagType{});
    const auto epsilon_vec = wrapper::vdup_n(ScalarType(epsilon), ExactTagType{});

    auto mean                = ScalarType(0.0);
    auto var                 = ScalarType(0.0);
    auto gamma               = ScalarType(1.0);
    auto beta                = ScalarType(0.0);
    auto conv_bias_in_scalar = ScalarType(0.0);
    execute_window_loop(win, [&](const Coordinates & id)
    {
        var = input_var[id[3]];
        if(input_gamma != nullptr)
        {
            gamma = input_gamma[id[3]];
        }

        if((id[0] == 0) && (id[1] == 0) && (id[2] == 0))
        {
            if(input_beta != nullptr)
            {
                beta     = input_beta[id[3]];
                beta_vec = wrapper::vdup_n(beta, ExactTagType{});
            }

            // Construct vectors
            mean     = input_mean[id[3]];
            mean_vec = wrapper::vdup_n(mean, ExactTagType{});

            if(conv_bias_in != nullptr)
            {
                conv_bias_in_scalar = conv_bias_in[id[3]];
            }
            auto conv_bias_tmp_scalar = (conv_bias_in_scalar - mean) / std::sqrt(var + ScalarType(epsilon));
            conv_bias_out[id[3]]      = (conv_bias_tmp_scalar * gamma) + beta;
        }

        int  x              = window_start_x;
        auto conv_w_in_ptr  = reinterpret_cast<const ScalarType *>(conv_w_in.ptr());
        auto conv_w_out_ptr = reinterpret_cast<ScalarType *>(conv_w_out.ptr());
        var_vec             = wrapper::vdup_n(var, ExactTagType{});
        gamma_vec           = wrapper::vdup_n(gamma, ExactTagType{});
        rvar_vec            = wrapper::vinvsqrt(wrapper::vadd(var_vec, epsilon_vec));

        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            auto wn = wrapper::vloadq(conv_w_in_ptr + x);
            wn      = wrapper::vmul(wn, rvar_vec);
            wn      = wrapper::vmul(wn, gamma_vec);

            // Store results
            wrapper::vstore(conv_w_out_ptr + x, wn);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            *(conv_w_out_ptr + x) = *(conv_w_in_ptr + x) / std::sqrt(var + ScalarType(epsilon)) * gamma;
        }
    },
    conv_w_in, conv_w_out);
}
}
}
#endif //SRC_CORE_NEON_KERNELS_FUSE_BATCH_NORMALIZATION_GENERIC_IMPL_H