aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/directconv2d/impl.h
blob: d3965326cdf57117279ad3dcc898ef2b8e9af290 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*
 * Copyright (c) 2022-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H
#define ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"

#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "src/core/NEON/wrapper/wrapper.h"

#include <algorithm>

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
template <typename T, bool has_pads>
void linearize_volume_nchw(const uint8_t *const in_ptr,
                           T                   *out_ptr,
                           bool                 has_bias,
                           int                  top_left_x,
                           int                  top_left_y,
                           int                  kernel_width,
                           int                  kernel_height,
                           int                  kernel_depth,
                           int                  input_w,
                           int                  input_h,
                           int                  input_stride_x,
                           int                  input_stride_y,
                           int                  input_stride_z,
                           int                  pad_value,
                           int                  dilation_x,
                           int                  dilation_y)
{
    const int kernel_size2 = kernel_width * kernel_height;
    const int x_e          = top_left_x + kernel_width * dilation_x;
    const int y_e          = top_left_y + kernel_height * dilation_y;

    // Linearize volume
    int d = 0;
    // This for loop linearize a volume with 3 slices. This allows:
    // 1) to reduce the iterations of the outer for loop "d"
    // 2) to have an optimized im2col for the first convolution layer where usually we have 3 IFMs
    for (; d <= (kernel_depth - 3); d += 3)
    {
        for (int y = top_left_y; y < y_e; y += dilation_y)
        {
            if ((y < 0 || y >= input_h) && has_pads)
            {
                // All the values will be the offset (will be zeros when not quantized)
                for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
                {
                    *(out_ptr + 0 * kernel_size2) = pad_value;
                    *(out_ptr + 1 * kernel_size2) = pad_value;
                    *(out_ptr + 2 * kernel_size2) = pad_value;
                }
            }
            else
            {
                for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
                {
                    if ((x < 0 || x >= input_w) && has_pads)
                    {
                        *(out_ptr + 0 * kernel_size2) = pad_value;
                        *(out_ptr + 1 * kernel_size2) = pad_value;
                        *(out_ptr + 2 * kernel_size2) = pad_value;
                    }
                    else
                    {
                        *(out_ptr + 0 * kernel_size2) = *(reinterpret_cast<const T *>(
                            in_ptr + ((d + 0) * input_stride_z + y * input_stride_y + x * input_stride_x)));
                        *(out_ptr + 1 * kernel_size2) = *(reinterpret_cast<const T *>(
                            in_ptr + ((d + 1) * input_stride_z + y * input_stride_y + x * input_stride_x)));
                        *(out_ptr + 2 * kernel_size2) = *(reinterpret_cast<const T *>(
                            in_ptr + ((d + 2) * input_stride_z + y * input_stride_y + x * input_stride_x)));
                    }
                }
            }
        }
        out_ptr += 2 * kernel_size2;
    }

    // Left over
    for (; d < kernel_depth; d++)
    {
        for (int y = top_left_y; y < y_e; y += dilation_y)
        {
            if ((y < 0 || y >= input_h) && has_pads)
            {
                // All the values will be the offset (will be zeros when not quantized)
                memset(static_cast<void *>(out_ptr), pad_value, kernel_width * sizeof(T));
                out_ptr += kernel_width;
            }
            else
            {
                for (int x = top_left_x; x < x_e; x += dilation_x, ++out_ptr)
                {
                    if ((x < 0 || x >= input_w) && has_pads)
                    {
                        *out_ptr = pad_value;
                    }
                    else
                    {
                        *out_ptr = *(reinterpret_cast<const T *>(
                            in_ptr + (d * input_stride_z + y * input_stride_y + x * input_stride_x)));
                    }
                }
            }
        }
    }

    // Append 1 if the convolution layer has biases
    if (has_bias)
    {
        *out_ptr = static_cast<T>(1);
    }
}

template <typename T, bool has_pads>
void linearize_volume_nhwc(const uint8_t *const in_ptr,
                           T                   *out_ptr,
                           bool                 has_bias,
                           int                  start_x,
                           int                  start_y,
                           int                  kernel_width,
                           int                  kernel_height,
                           int                  input_w,
                           int                  input_h,
                           int                  input_c,
                           int                  input_stride_y,
                           int                  input_stride_z,
                           int                  pad_value,
                           int                  dilation_x,
                           int                  dilation_y)
{
    const int end_x        = start_x + kernel_width * dilation_x;
    const int end_y        = start_y + kernel_height * dilation_y;
    const int pad_quant    = kernel_width * input_c;
    const int element_size = static_cast<int>(sizeof(T));
    if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) &&
        (input_stride_y == input_c * element_size))
    {
        for (int y = start_y; y < end_y; y += dilation_y)
        {
            //optimized for no dilation and no boundary pixels
            memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)),
                   input_c * kernel_width * element_size);
            out_ptr += input_c * kernel_width;
        }
    }
    else
    {
        for (int y = start_y; y < end_y; y += dilation_y)
        {
            if (y < 0 || y >= input_h)
            {
                memset(static_cast<void *>(out_ptr), pad_value, pad_quant * element_size);
                out_ptr += pad_quant;
            }
            else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != input_c * element_size)
            {
                for (int x = start_x; x < end_x; x += dilation_x)
                {
                    if (x < 0 || x >= input_w)
                    {
                        memset(static_cast<void *>(out_ptr), pad_value, input_c * element_size);
                        out_ptr += input_c;
                    }
                    else
                    {
                        memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + x * input_stride_y)),
                               input_c * element_size);
                        out_ptr += input_c;
                    }
                }
            }
            else
            {
                //optimized for no dilation and no boundary pixels
                memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + start_x * input_stride_y)),
                       input_c * kernel_width * element_size);
                out_ptr += input_c * kernel_width;
            }
        }
    }
    // Append 1 if the convolution layer has biases
    if (has_bias)
    {
        *out_ptr = static_cast<T>(1);
    }
}

template <typename T, bool has_pads>
void linearize_volume_nhwc(const uint8_t *const in_ptr,
                           T                   *out_ptr,
                           bool                 has_bias,
                           int                  start_x,
                           int                  start_y,
                           int                  kernel_width,
                           int                  kernel_height,
                           int                  input_w,
                           int                  input_h,
                           int                  input_c,
                           int                  input_stride_y,
                           int                  input_stride_z,
                           int                  pad_value,
                           int                  dilation_x,
                           int                  dilation_y,
                           int                  pad_right)
{
    const int end_x              = start_x + kernel_width * dilation_x;
    const int end_y              = start_y + kernel_height * dilation_y;
    const int pad_quant          = kernel_width * (input_c + pad_right);
    const int element_size       = static_cast<int>(sizeof(T));
    const int channel_chunk_size = input_c * element_size;

    if ((start_y >= 0) && (end_y < input_h) && (start_x >= 0) && (end_x < input_w) && (dilation_x == 1) &&
        (input_stride_y == channel_chunk_size))
    {
        for (int y = start_y; y < end_y; y += dilation_y)
        {
            const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y);
            for (int e = 0; e < kernel_width; e++)
            {
                memcpy(out_ptr, reinterpret_cast<const T *>(offset_ptr + e * channel_chunk_size), channel_chunk_size);
                out_ptr += input_c + pad_right;
            }
        }
    }
    else
    {
        for (int y = start_y; y < end_y; y += dilation_y)
        {
            if (y < 0 || y >= input_h)
            {
                memset(static_cast<void *>(out_ptr), pad_value, pad_quant * element_size);
                out_ptr += pad_quant;
            }
            else if (dilation_x > 1 || start_x < 0 || end_x >= input_w || input_stride_y != channel_chunk_size)
            {
                for (int x = start_x; x < end_x; x += dilation_x)
                {
                    if (x < 0 || x >= input_w)
                    {
                        memset(static_cast<void *>(out_ptr), pad_value, (input_c + pad_right) * element_size);
                        out_ptr += input_c + pad_right;
                    }
                    else
                    {
                        memcpy(out_ptr, reinterpret_cast<const T *>(in_ptr + (y * input_stride_z + x * input_stride_y)),
                               channel_chunk_size);
                        out_ptr += input_c + pad_right;
                    }
                }
            }
            else
            {
                const uint8_t *offset_ptr = in_ptr + (y * input_stride_z + start_x * input_stride_y);
                for (int e = 0; e < kernel_width; e++)
                {
                    memcpy(out_ptr, reinterpret_cast<const T *>(offset_ptr + e * channel_chunk_size),
                           channel_chunk_size);
                    out_ptr += input_c + pad_right;
                }
            }
        }
    }
    // Append 1 if the convolution layer has biases
    if (has_bias)
    {
        *out_ptr = static_cast<T>(1);
    }
}

template <typename T, bool has_pads, bool is_nchw>
void run_im2col(const ITensor                        *src,
                ITensor                              *dst,
                const Window                         &window,
                DataLayout                            data_layout,
                const PadStrideInfo                  &conv_info,
                std::pair<unsigned int, unsigned int> convolved_dims,
                const Size2D                         &kernel_dims,
                const Size2D                         &dilation,
                uint32_t                              input_pad_right,
                bool                                  has_bias)
{
    const unsigned int width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const unsigned int height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const unsigned int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    const int input_w        = src->info()->dimension(width_idx);
    const int input_h        = src->info()->dimension(height_idx);
    const int input_c        = src->info()->dimension(channel_idx);
    const int input_stride_x = src->info()->strides_in_bytes().x();
    const int input_stride_y = src->info()->strides_in_bytes().y();
    const int input_stride_z = src->info()->strides_in_bytes().z();
    const int pad_left       = conv_info.pad_left();
    const int pad_top        = conv_info.pad_top();
    const int stride_x       = conv_info.stride().first;
    const int stride_y       = conv_info.stride().second;
    const int pad_value =
        is_data_type_quantized(src->info()->data_type()) ? src->info()->quantization_info().uniform().offset : 0;

    const auto kernel_width  = kernel_dims.width;
    const auto kernel_height = kernel_dims.height;

    Window window_in_out(window);
    // The first three dimensions of the input and output are increased by the inner loops
    window_in_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
    window_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));

    // Create iterators
    Iterator in(src, window_in_out);
    Iterator out(dst, window_in_out);

    execute_window_loop(
        window,
        [&](const Coordinates &id)
        {
            const int start_w = id[width_idx] * stride_x - pad_left;
            const int start_h = id[height_idx] * stride_y - pad_top;

            // Get pointers
            const uint8_t *const input_ptr = in.ptr();
            auto                 output_ptr =
                reinterpret_cast<T *>(out.ptr() + (id[width_idx] + id[height_idx] * convolved_dims.first) *
                                                      dst->info()->strides_in_bytes().y());

            // Linearize volume
            if (is_nchw)
            {
                linearize_volume_nchw<T, has_pads>(
                    input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width, kernel_height, input_c, input_w,
                    input_h, input_stride_x, input_stride_y, input_stride_z, pad_value, dilation.x(), dilation.y());
            }
            else
            {
                if (input_pad_right > 0)
                {
                    linearize_volume_nhwc<T, has_pads>(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width,
                                                       kernel_height, input_w, input_h, input_c, input_stride_y,
                                                       input_stride_z, pad_value, dilation.x(), dilation.y(),
                                                       input_pad_right);
                }
                else
                {
                    linearize_volume_nhwc<T, has_pads>(input_ptr, output_ptr, has_bias, start_w, start_h, kernel_width,
                                                       kernel_height, input_w, input_h, input_c, input_stride_y,
                                                       input_stride_z, pad_value, dilation.x(), dilation.y());
                }
            }
        },
        in, out);
}

} // namespace kernels
} // namespace cpu
} // namespace arm_compute
#endif // ACL_SRC_CPU_KERNELS_DIRECTCONV2D_IMPL_H