aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/activation/generic/neon/impl.h
blob: afeb6f7f3dfa3b9128cf52c4f8dab4879a0b5426 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Copyright (c) 2020-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/function_info/ActivationLayerInfo.h"

#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
namespace cpu
{
/** Constant parameters needed by the activation implementation.
 *  These parameters differ for each floating type
 *
 * @note This are passed as a struct as C++ does not allow float as a template parameter until C++20
 **/
struct ActFpImplParams
{
    float delta;  /**< Minimum delta needed to avoid NaN on corner-cases of elementary functions */
    int   step_x; /**< Window step at the x dimension */
};

#ifndef __aarch64__
inline float32x4_t mask_float_vector(const float32x4_t &in, const uint32x4_t &mask)
{
    auto int_in = vreinterpretq_u32_f32(in);
    return vreinterpretq_f32_u32(wrapper::vand(int_in, mask));
}
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
inline float16x8_t mask_float_vector(const float16x8_t &in, const uint16x8_t &mask)
{
    auto int_in = vreinterpretq_u16_f16(in);
    return vreinterpretq_f16_u16(wrapper::vand(int_in, mask));
}
#endif //defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && defined(ENABLE_FP16_KERNELS)
#endif /* __aarch64__ */

template <typename T, const ActFpImplParams &P>
void fp_neon_activation_impl(const ITensor             *src,
                             ITensor                   *dst,
                             const ActivationLayerInfo &act_info,
                             const Window              &window)
{
    /** SIMD vector tag type. */
    using ExactTagType =
        typename arm_compute::wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
    constexpr int                                 window_step_x  = P.step_x;
    const auto                                    window_start_x = static_cast<int>(window.x().start());
    const auto                                    window_end_x   = static_cast<int>(window.x().end());
    const ActivationLayerInfo::ActivationFunction act            = act_info.activation();
    Window                                        win_collapsed  = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
    Iterator input(src, win_collapsed);
    Iterator output(dst, win_collapsed);
    // In case of non-aarch64, a small delta value is added to the input
    // to prevent NAN values caused by zeros in inputs to SQRT.
    // In case of aarh64, we call vsqrt directly, so we don't use delta.
#ifndef __aarch64__
    const auto delta = wrapper::vdup_n(static_cast<T>(P.delta), ExactTagType{});
#else  /* #ifndef __aarch64__ */
    const auto const_inv_2      = wrapper::vdup_n(static_cast<T>(0.5f), ExactTagType{});
    const auto const_inv_sqrt_2 = wrapper::vdup_n(static_cast<T>(0.70710678118f), ExactTagType{});
#endif /* __aarch64__ */
    const auto      const_1           = wrapper::vdup_n(static_cast<T>(1.f), ExactTagType{});
    const auto      const_0           = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
    const auto      const_6           = wrapper::vdup_n(static_cast<T>(6.f), ExactTagType{});
    const auto      const_3           = wrapper::vdup_n(static_cast<T>(3.f), ExactTagType{});
    const auto      const_inv_6       = wrapper::vdup_n(static_cast<T>(0.166666667f), ExactTagType{});
    constexpr float soft_relu_thresh  = 12.f;
    const auto      vsoft_relu_thresh = wrapper::vdup_n(static_cast<T>(soft_relu_thresh), ExactTagType{});
    const auto      va                = wrapper::vdup_n(static_cast<T>(act_info.a()), ExactTagType{});
    const auto      vb                = wrapper::vdup_n(static_cast<T>(act_info.b()), ExactTagType{});
    const auto      a                 = static_cast<T>(act_info.a());
    const auto      b                 = static_cast<T>(act_info.b());
    execute_window_loop(
        win_collapsed,
        [&](const Coordinates &)
        {
            const auto input_ptr  = reinterpret_cast<const T *>(input.ptr());
            const auto output_ptr = reinterpret_cast<T *>(output.ptr());
            wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128> tmp;
            // Compute S elements per iteration
            int x = window_start_x;
            for (; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto vin = wrapper::vloadq(input_ptr + x);
                switch (act)
                {
                    case ActivationLayerInfo::ActivationFunction::ABS:
                        tmp = wrapper::vabs(vin);
                        break;
                    case ActivationLayerInfo::ActivationFunction::LINEAR:
                        tmp = wrapper::vmla(vb, va, vin);
                        break;
                    case ActivationLayerInfo::ActivationFunction::LOGISTIC:
                        tmp = wrapper::vinv(wrapper::vadd(const_1, wrapper::vexpq(wrapper::vneg(vin))));
                        break;
                    case ActivationLayerInfo::ActivationFunction::RELU:
                        tmp = wrapper::vmax(const_0, vin);
                        break;
                    case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
                        tmp = wrapper::vmin(va, wrapper::vmax(const_0, vin));
                        break;
                    case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
                        tmp = wrapper::vmin(va, wrapper::vmax(vb, vin));
                        break;
                    case ActivationLayerInfo::ActivationFunction::LEAKY_RELU:
                        tmp = wrapper::vbsl(wrapper::vcgt(vin, const_0), vin, wrapper::vmul(va, vin));
                        break;
                    case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
                        tmp = wrapper::vbsl(wrapper::vcgt(vin, vsoft_relu_thresh), vin,
                                            wrapper::vlog(wrapper::vadd(const_1, wrapper::vexpq(vin))));
                        break;
                    case ActivationLayerInfo::ActivationFunction::ELU:
                        tmp = wrapper::vbsl(wrapper::vcge(vin, const_0), vin,
                                            wrapper::vmul(va, wrapper::vsub(wrapper::vexpq(vin), const_1)));
                        break;
                    case ActivationLayerInfo::ActivationFunction::SQRT:
#ifdef __aarch64__
                        tmp = wrapper::vsqrt(vin);
#else  /* __aarch64__ */
                    {
                        const auto bitmask = wrapper::vceq(vin, wrapper::vdup_n(0.f, ExactTagType{}));
                        tmp = wrapper::vinv(wrapper::vinvsqrt(wrapper::vadd(vin, mask_float_vector(delta, bitmask))));
                        tmp = mask_float_vector(tmp, wrapper::vnot(bitmask));
                    }
#endif /* __aarch64__ */
                        break;
                    case ActivationLayerInfo::ActivationFunction::SQUARE:
                        tmp = wrapper::vmul(vin, vin);
                        break;
                    case ActivationLayerInfo::ActivationFunction::TANH:
                        tmp = wrapper::vmul(va, wrapper::vtanh(wrapper::vmul(vb, vin)));
                        break;
                    case ActivationLayerInfo::ActivationFunction::IDENTITY:
                        tmp = vin;
                        break;
                    case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
                        tmp = wrapper::vmul(
                            vin,
                            wrapper::vmul(const_inv_6,
                                          wrapper::vmin(const_6, wrapper::vmax(const_0, wrapper::vadd(vin, const_3)))));
                        break;
                    case ActivationLayerInfo::ActivationFunction::SWISH:
                        tmp = wrapper::vmul(vin, wrapper::vinv(wrapper::vadd(
                                                     const_1, wrapper::vexpq(wrapper::vneg(wrapper::vmul(va, vin))))));
                        break;
#ifdef __aarch64__
                    case ActivationLayerInfo::ActivationFunction::GELU:
                        tmp = wrapper::vmul(
                            vin,
                            wrapper::vmul(const_inv_2,
                                          wrapper::vadd(const_1, wrapper::verf(wrapper::vmul(vin, const_inv_sqrt_2)))));
                        break;
#endif /* __aarch64__ */
                    default:
                        ARM_COMPUTE_ERROR("Unsupported activation function");
                }
                wrapper::vstore(output_ptr + x, tmp);
            }
            // Compute left-over elements
            for (; x < window_end_x; ++x)
            {
                const T in = *(reinterpret_cast<const T *>(input_ptr + x));
                T       tmp;
                switch (act)
                {
                    case ActivationLayerInfo::ActivationFunction::ABS:
                        tmp = std::abs(in);
                        break;
                    case ActivationLayerInfo::ActivationFunction::LINEAR:
                        tmp = a * in + b;
                        break;
                    case ActivationLayerInfo::ActivationFunction::LOGISTIC:
                        tmp = static_cast<T>(1) / (static_cast<T>(1) + std::exp(-in));
                        break;
                    case ActivationLayerInfo::ActivationFunction::RELU:
                        tmp = std::max<T>(static_cast<T>(0), in);
                        break;
                    case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
                        tmp = std::min<T>(a, std::max(static_cast<T>(0), in));
                        break;
                    case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
                        tmp = std::min<T>(a, std::max<T>(b, in));
                        break;
                    case ActivationLayerInfo::ActivationFunction::LEAKY_RELU:
                        tmp = (in > 0) ? in : a * in;
                        break;
                    case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
                        tmp = (in > soft_relu_thresh) ? in : std::log(static_cast<T>(1) + std::exp(in));
                        break;
                    case ActivationLayerInfo::ActivationFunction::ELU:
                        tmp = (in >= 0) ? in : a * (std::exp(in) - 1);
                        break;
                    case ActivationLayerInfo::ActivationFunction::SQRT:
                        tmp = std::sqrt(in);
                        break;
                    case ActivationLayerInfo::ActivationFunction::SQUARE:
                        tmp = in * in;
                        break;
                    case ActivationLayerInfo::ActivationFunction::TANH:
                        tmp = a * std::tanh(b * in);
                        break;
                    case ActivationLayerInfo::ActivationFunction::IDENTITY:
                        tmp = in;
                        break;
                    case ActivationLayerInfo::ActivationFunction::HARD_SWISH:
                        tmp = in * ((std::min(std::max((in + 3), 0.0f), 6.0f)) * 0.166666667f);
                        break;
                    case ActivationLayerInfo::ActivationFunction::SWISH:
                        tmp = in / (static_cast<T>(1) + std::exp(-a * in));
                        break;
                    case ActivationLayerInfo::ActivationFunction::GELU:
                        tmp = in * static_cast<T>(0.5f * (1.0f + erff(static_cast<float>(in) / 1.41421356237f)));
                        break;
                    default:
                        ARM_COMPUTE_ERROR("Unsupported activation function");
                }
                *(output_ptr + x) = tmp;
            }
        },
        input, output);
}
} // namespace cpu
} // namespace arm_compute