aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuTransposeKernel.cpp
blob: 0f762ba0417f8cf2478be355b8c9f00e072c44e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/*
 * Copyright (c) 2021, 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/cpu/kernels/CpuTransposeKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/Validate.h"

#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"

#include <arm_neon.h>

namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
unsigned int num_elems_processed(size_t element_size)
{
    switch (element_size)
    {
        case 1:
            return 8;
        case 2:
            return 4;
        case 4:
#ifdef __aarch64__
            return 8;
#else  // __aarch64__
            return 4;
#endif // __aarch64__
        default:
            break;
    }

    ARM_COMPUTE_ERROR("Element size not supported");
}

void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int    window_step_x            = 8;
    const int    window_step_y            = 8;
    const int    window_start_x           = window.x().start();
    const int    window_end_x             = window.x().end();
    const int    window_start_y           = window.y().start();
    const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if (left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if (window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the SIMD path if and only if the input is not a row-vector
    if (in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                // Compute 8x8 elements per iteration
                int x = window_start_x;
                for (; x <= (window_end_x - window_step_x); x += window_step_x)
                {
                    const uint8x8_t row0 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
                    const uint8x8_t row1 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
                    const uint8x8_t row2 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
                    const uint8x8_t row3 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
                    const uint8x8_t row4 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
                    const uint8x8_t row5 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
                    const uint8x8_t row6 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
                    const uint8x8_t row7 =
                        vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));

                    // Transpose 2x2
                    const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
                    const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
                    const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
                    const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);

                    // Transpose 4x4
                    const uint16x4x2_t k0_u16 =
                        vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
                    const uint16x4x2_t k1_u16 =
                        vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
                    const uint16x4x2_t k2_u16 =
                        vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
                    const uint16x4x2_t k3_u16 =
                        vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));

                    // Transpose 8x8
                    const uint32x2x2_t k0_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
                    const uint32x2x2_t k1_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
                    const uint32x2x2_t k2_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
                    const uint32x2x2_t k3_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;

                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
                    vst1_u8(
                        reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes),
                        vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
                }

                // Compute left-over elements along the x dimension (1x8)
                for (; x < window_end_x; ++x)
                {
                    const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
                    const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
                    const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
                    const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
                    const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
                    const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
                    const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
                    const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);

                    uint8x8_t result = vdup_n_u8(0);
                    result           = vset_lane_u8(val0, result, 0);
                    result           = vset_lane_u8(val1, result, 1);
                    result           = vset_lane_u8(val2, result, 2);
                    result           = vset_lane_u8(val3, result, 3);
                    result           = vset_lane_u8(val4, result, 4);
                    result           = vset_lane_u8(val5, result, 5);
                    result           = vset_lane_u8(val6, result, 6);
                    result           = vset_lane_u8(val7, result, 7);

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;

                    vst1_u8(output.ptr() + dst_offset_in_bytes, result);
                }
            },
            input, output);
    }

    if (left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                const uint8_t val0 = *input.ptr();

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;

                *(output.ptr() + dst_offset_in_bytes) = val0;
            },
            input, output);
    }
}

void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int    window_step_x            = 4;
    const int    window_step_y            = 4;
    const int    window_start_x           = window.x().start();
    const int    window_end_x             = window.x().end();
    const int    window_start_y           = window.y().start();
    const int    window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int    window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if (left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if (window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the SIMD path if and only if the input is not a row-vector
    if (in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                // Compute 4x4 elements per iteration
                int x = window_start_x;
                for (; x <= (window_end_x - window_step_x); x += window_step_x)
                {
                    const uint16x4_t row0 =
                        vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint16x4_t row1 =
                        vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint16x4_t row2 =
                        vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint16x4_t row3 =
                        vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                    // Transpose 2x2
                    const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
                    const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);

                    // Transpose 4x4
                    const uint32x2x2_t k0_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
                    const uint32x2x2_t k1_u32 =
                        vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;

                    vst1_u16(
                        reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes),
                        vreinterpret_u16_u32(k0_u32.val[0]));
                    vst1_u16(
                        reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes),
                        vreinterpret_u16_u32(k1_u32.val[0]));
                    vst1_u16(
                        reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes),
                        vreinterpret_u16_u32(k0_u32.val[1]));
                    vst1_u16(
                        reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes),
                        vreinterpret_u16_u32(k1_u32.val[1]));
                }

                // Compute left-over elements (1x4)
                for (; x < window_end_x; ++x)
                {
                    const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                    uint16x4_t result = vdup_n_u16(0);
                    result            = vset_lane_u16(val0, result, 0);
                    result            = vset_lane_u16(val1, result, 1);
                    result            = vset_lane_u16(val2, result, 2);
                    result            = vset_lane_u16(val3, result, 3);

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;

                    vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
                }
            },
            input, output);
    }

    if (left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;

                *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
            },
            input, output);
    }
}

#ifdef __aarch64__
inline uint32x4x2_t vld1q_u32_x2_(const uint32_t *ptr)
{
    // gcc-7 doesn't support vld1q_u32_x2 instruction
    return {vld1q_u32(ptr), vld1q_u32(ptr + 4)};
}

inline void vst1q_u32_x2_(const uint32_t *ptr, const uint32x4x2_t &val)
{
    // gcc-7 doesn't support vst1q_u32_x2 instruction
    vst1q_u32(const_cast<uint32_t *>(ptr), val.val[0]);
    vst1q_u32(const_cast<uint32_t *>(ptr + 4), val.val[1]);
}

void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    constexpr int window_step_x            = 8;
    constexpr int window_step_y            = 8;
    const int     window_start_x           = window.x().start();
    const int     window_end_x             = window.x().end();
    const int     window_start_y           = window.y().start();
    const int     window_end_y             = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int     window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t  input_stride_in_bytes    = in->info()->strides_in_bytes()[1];
    const size_t  output_stride_in_bytes   = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if (left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if (window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the SIMD path if and only if the input is not a row-vector
    if (in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                // Compute 8x8 elements per iteration
                int x = window_start_x;
                for (; x <= (window_end_x - window_step_x); x += window_step_x)
                {
                    // Load
                    const uint32x4x2_t row0 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row1 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row2 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row3 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row4 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 4 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row5 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 5 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row6 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 6 * input_stride_in_bytes) + x);
                    const uint32x4x2_t row7 =
                        vld1q_u32_x2_(reinterpret_cast<const uint32_t *>(input.ptr() + 7 * input_stride_in_bytes) + x);

                    // Transpose 2x4
                    const uint32x4x2_t k0_u32 = {vtrn1q_u32(row0.val[0], row1.val[0]),
                                                 vtrn2q_u32(row0.val[0], row1.val[0])};
                    const uint32x4x2_t k1_u32 = {vtrn1q_u32(row0.val[1], row1.val[1]),
                                                 vtrn2q_u32(row0.val[1], row1.val[1])};
                    const uint32x4x2_t k2_u32 = {vtrn1q_u32(row2.val[0], row3.val[0]),
                                                 vtrn2q_u32(row2.val[0], row3.val[0])};
                    const uint32x4x2_t k3_u32 = {vtrn1q_u32(row2.val[1], row3.val[1]),
                                                 vtrn2q_u32(row2.val[1], row3.val[1])};
                    const uint32x4x2_t k4_u32 = {vtrn1q_u32(row4.val[0], row5.val[0]),
                                                 vtrn2q_u32(row4.val[0], row5.val[0])};
                    const uint32x4x2_t k5_u32 = {vtrn1q_u32(row4.val[1], row5.val[1]),
                                                 vtrn2q_u32(row4.val[1], row5.val[1])};
                    const uint32x4x2_t k6_u32 = {vtrn1q_u32(row6.val[0], row7.val[0]),
                                                 vtrn2q_u32(row6.val[0], row7.val[0])};
                    const uint32x4x2_t k7_u32 = {vtrn1q_u32(row6.val[1], row7.val[1]),
                                                 vtrn2q_u32(row6.val[1], row7.val[1])};

                    // Transpose 2x2
                    const uint64x2x2_t k0_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k0_u32.val[0]), vreinterpretq_u64_u32(k2_u32.val[0])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k0_u32.val[0]), vreinterpretq_u64_u32(k2_u32.val[0]))};
                    const uint64x2x2_t k1_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k0_u32.val[1]), vreinterpretq_u64_u32(k2_u32.val[1])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k0_u32.val[1]), vreinterpretq_u64_u32(k2_u32.val[1]))};
                    const uint64x2x2_t k2_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k1_u32.val[0]), vreinterpretq_u64_u32(k3_u32.val[0])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k1_u32.val[0]), vreinterpretq_u64_u32(k3_u32.val[0]))};
                    const uint64x2x2_t k3_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k1_u32.val[1]), vreinterpretq_u64_u32(k3_u32.val[1])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k1_u32.val[1]), vreinterpretq_u64_u32(k3_u32.val[1]))};
                    const uint64x2x2_t k4_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k4_u32.val[0]), vreinterpretq_u64_u32(k6_u32.val[0])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k4_u32.val[0]), vreinterpretq_u64_u32(k6_u32.val[0]))};
                    const uint64x2x2_t k5_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k4_u32.val[1]), vreinterpretq_u64_u32(k6_u32.val[1])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k4_u32.val[1]), vreinterpretq_u64_u32(k6_u32.val[1]))};
                    const uint64x2x2_t k6_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k5_u32.val[0]), vreinterpretq_u64_u32(k7_u32.val[0])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k5_u32.val[0]), vreinterpretq_u64_u32(k7_u32.val[0]))};
                    const uint64x2x2_t k7_u64 = {
                        vtrn1q_u64(vreinterpretq_u64_u32(k5_u32.val[1]), vreinterpretq_u64_u32(k7_u32.val[1])),
                        vtrn2q_u64(vreinterpretq_u64_u32(k5_u32.val[1]), vreinterpretq_u64_u32(k7_u32.val[1]))};

                    // Swap blocks
                    const uint32x4x2_t col0 = {vreinterpretq_u32_u64(k0_u64.val[0]),
                                               vreinterpretq_u32_u64(k4_u64.val[0])};
                    const uint32x4x2_t col1 = {vreinterpretq_u32_u64(k1_u64.val[0]),
                                               vreinterpretq_u32_u64(k5_u64.val[0])};
                    const uint32x4x2_t col2 = {vreinterpretq_u32_u64(k0_u64.val[1]),
                                               vreinterpretq_u32_u64(k4_u64.val[1])};
                    const uint32x4x2_t col3 = {vreinterpretq_u32_u64(k1_u64.val[1]),
                                               vreinterpretq_u32_u64(k5_u64.val[1])};
                    const uint32x4x2_t col4 = {vreinterpretq_u32_u64(k2_u64.val[0]),
                                               vreinterpretq_u32_u64(k6_u64.val[0])};
                    const uint32x4x2_t col5 = {vreinterpretq_u32_u64(k3_u64.val[0]),
                                               vreinterpretq_u32_u64(k7_u64.val[0])};
                    const uint32x4x2_t col6 = {vreinterpretq_u32_u64(k2_u64.val[1]),
                                               vreinterpretq_u32_u64(k6_u64.val[1])};
                    const uint32x4x2_t col7 = {vreinterpretq_u32_u64(k3_u64.val[1]),
                                               vreinterpretq_u32_u64(k7_u64.val[1])};

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                    // Store
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes),
                        col0);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes),
                        col1);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes),
                        col2);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes),
                        col3);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes),
                        col4);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes),
                        col5);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes),
                        col6);
                    vst1q_u32_x2_(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes),
                        col7);
                }

                // Compute left-over elements (8x1)
                for (; x < window_end_x; ++x)
                {
                    const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
                    const uint32_t val4 = *(reinterpret_cast<uint32_t *>(input.ptr() + 4 * input_stride_in_bytes) + x);
                    const uint32_t val5 = *(reinterpret_cast<uint32_t *>(input.ptr() + 5 * input_stride_in_bytes) + x);
                    const uint32_t val6 = *(reinterpret_cast<uint32_t *>(input.ptr() + 6 * input_stride_in_bytes) + x);
                    const uint32_t val7 = *(reinterpret_cast<uint32_t *>(input.ptr() + 7 * input_stride_in_bytes) + x);

                    uint32x4_t result0 = vdupq_n_u32(0);
                    uint32x4_t result1 = vdupq_n_u32(0);
                    result0            = vsetq_lane_u32(val0, result0, 0);
                    result0            = vsetq_lane_u32(val1, result0, 1);
                    result0            = vsetq_lane_u32(val2, result0, 2);
                    result0            = vsetq_lane_u32(val3, result0, 3);
                    result1            = vsetq_lane_u32(val4, result1, 0);
                    result1            = vsetq_lane_u32(val5, result1, 1);
                    result1            = vsetq_lane_u32(val6, result1, 2);
                    result1            = vsetq_lane_u32(val7, result1, 3);

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                    vst1q_u32_x2_(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), {result0, result1});
                }
            },
            input, output);
    }

    if (left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;

                *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
            },
            input, output);
    }
}
#else  // __aarch64__
void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
{
    const int window_step_x = 4;
    const int window_step_y = 4;
    const int window_start_x = window.x().start();
    const int window_end_x = window.x().end();
    const int window_start_y = window.y().start();
    const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
    const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
    const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
    const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];

    // Check if we need a left-over loop for the y dimension
    bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);

    Window window_in(window);
    window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
    if (left_over_loop_y)
    {
        // Check if window_end_y_multiple_of is greater than window_start_y
        if (window_end_y_multiple_of > window_start_y)
        {
            window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
        }
        else
        {
            window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
        }
    }

    Window window_out(window);
    window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
    window_out.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator output(out, window_out);

    // Run the SIMD path if and only if the input is not a row-vector
    if (in->info()->dimension(1) != 1)
    {
        Iterator input(in, window_in);
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                // Compute 4x4 elements per iteration
                int x = window_start_x;
                for (; x <= (window_end_x - window_step_x); x += window_step_x)
                {
                    const uint32x4_t row0 =
                        vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint32x4_t row1 =
                        vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint32x4_t row2 =
                        vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint32x4_t row3 =
                        vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                    // Transpose 2x2
                    const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
                    const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
                    const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
                    const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                    // Swap block 01 with block 10 and store
                    vst1q_u32(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes),
                        vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
                    vst1q_u32(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes),
                        vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
                    vst1q_u32(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes),
                        vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
                    vst1q_u32(
                        reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes),
                        vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
                }

                // Compute left-over elements (1x4)
                for (; x < window_end_x; ++x)
                {
                    const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
                    const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
                    const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
                    const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);

                    uint32x4_t result = vdupq_n_u32(0);
                    result = vsetq_lane_u32(val0, result, 0);
                    result = vsetq_lane_u32(val1, result, 1);
                    result = vsetq_lane_u32(val2, result, 2);
                    result = vsetq_lane_u32(val3, result, 3);

                    // Compute destination address
                    const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;

                    vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
                }
            },
            input, output);
    }

    if (left_over_loop_y)
    {
        window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
        window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));

        Iterator input(in, window_in);
        Iterator output(out, window_out);

        // Compute left-over elements along the y dimension (1x1)
        execute_window_loop(
            window_in,
            [&](const Coordinates &id)
            {
                const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));

                // Compute destination address
                const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;

                *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
            },
            input, output);
    }
}
#endif // __aarch64__
} // namespace

void CpuTransposeKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);

    // Destination auto inizialitation if not yet initialized
    const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);
    auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape));

    // Explicitly set the tensor shape to preserve dimensions
    dst->set_tensor_shape(dst_shape);

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate(src, dst));

    // Note: This kernel performs 16 elements per iteration.
    // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
    // For this reason num_elems_processed_per_iteration_x is set to 1
    const unsigned int num_elems_processed_per_iteration_x = 1;
    const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size());

    // Configure kernel window
    Window win =
        calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

    // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped
    Coordinates coord;
    coord.set_num_dimensions(dst->num_dimensions());
    dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));

    ICpuKernel::configure(win);
}

Status CpuTransposeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src);
    //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
    ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);

    // Error if input is not 8 bit, 16bit or 32bit
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4,
                                    "Element size not supported");

    // Validate configured destination
    if (dst->total_size() != 0)
    {
        const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
    }

    return Status{};
}

void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);

    const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
    auto       dst = tensors.get_tensor(TensorType::ACL_DST);

    switch (src->info()->element_size())
    {
        case 1:
            transpose_8bit_elements(src, dst, window);
            break;
        case 2:
            transpose_16bit_elements(src, dst, window);
            break;
        case 4:
            transpose_32bit_elements(src, dst, window);
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }
}

const char *CpuTransposeKernel::name() const
{
    return "CpuTransposeKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute