aboutsummaryrefslogtreecommitdiff
path: root/src/core/gpu/cl/kernels/ClSoftmaxKernel.cpp
blob: 000c9ad04db56e31ebbf7a3122dd6f277f6bed4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "src/core/gpu/cl/kernels/ClSoftmaxKernel.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/experimental/Types.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/CL/CLValidate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"

namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
/** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options.
 *
 * Prepares these build options:
 * -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier.
 * -DIFF_MIN - threshold difference between maximum value of input data and current processed value,
 *             it defines whether the value will be taken into account or not.
 *
 * @param[in] build_opts  Build options to extend
 * @param[in] input_scale Input scaling factor
 * @param[in] beta        Exponent scaling factor beta
 */
CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta)
{
    // Number of integer bits in temporary fixed-point representation of current-to-max difference
    static const int scaled_diff_int_bits = 5;
    // Number of integer bits used in temporary fixed-point representation of exponent accumulator
    static const int exp_accumulation_in_bits = 12;

    const double beta_multiplier = std::min(
                                       1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)),
                                       (1LL << 31) - 1.0);
    int input_beta_multiplier;
    int input_beta_left_shift;
    quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift);

    const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1LL << (31 - scaled_diff_int_bits)) / (1LL << input_beta_left_shift);
    const int    diff_min           = -1.f * std::floor(max_input_rescaled);

    CLBuildOptions build_opts;
    build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits));
    build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits));
    build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier));
    build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift));
    build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min));

    return build_opts;
}

Status validate_arguments_1DMaxShiftExpSum(const ITensorInfo &src, const ITensorInfo &max, const ITensorInfo &dst, const ITensorInfo &sum)
{
    ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &max);

    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());

    // Checks performed when output is configured
    if(dst.total_size() != 0)
    {
        if(is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
        }
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
    }

    // Checks performed when sum is configured
    if(sum.total_size() != 0)
    {
        if(is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&sum, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&max, &sum);
        }
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&max, &sum);
    }

    return Status{};
}

Status validate_arguments_1DNorm(const ITensorInfo &src, const ITensorInfo &sum, const ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_F16_UNSUPPORTED(&src);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::S32, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &sum);
    ARM_COMPUTE_RETURN_ERROR_ON(info.is_log && !is_data_type_float(info.input_data_type));

    // Note: output should always have a scale of 1/256 and offset 0
    const QuantizationInfo allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
    const bool             is_quantized_asymmetric   = is_data_type_quantized_asymmetric(info.input_data_type);

    // Checks performed when output is configured
    if(dst.total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
        if(!is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
            ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != allowed_quantization_info);
        }
    }

    return Status{};
}
} // namespace

/**< Grid size (obtained through auto-tuning) */
const unsigned int ClLogits1DMaxShiftExpSumKernel::_grid_size = 64;
/**< Vector size in the serial case (obtained through auto-tuning) */
const unsigned int ClLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8;
/**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/
const unsigned int ClLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4;

void ClLogits1DMaxShiftExpSumKernel::configure(const CLCompileContext &compile_context, const ITensorInfo &src, ITensorInfo &max, ITensorInfo &dst, ITensorInfo &sum, const SoftmaxKernelInfo &info)
{
    auto padding_info = get_padding_info({ &src, &max, &dst, &sum });

    // Output auto initialization if not yet initialized
    auto_init_if_empty(sum, src.clone()->set_tensor_shape(max.tensor_shape()));
    auto_init_if_empty(dst, *src.clone());

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(src, max, dst, sum));

    const DataType                dt                 = src.data_type();
    const UniformQuantizationInfo qinfo              = src.quantization_info().uniform();
    const size_t                  reduction_dim_size = src.dimension(0);
    const float                   beta               = info.beta;
    const auto                    is_signed_qasymm8  = is_data_type_quantized_asymmetric_signed(info.input_data_type);
    const int                     min_value          = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;

    ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size);
    const unsigned int    vector_size             = adjust_vec_size(std::get<1>(parallel_reduction_info), reduction_dim_size);

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt));
    build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
    build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
    build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(reduction_dim_size));
    build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(reduction_dim_size % vector_size));
    build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size))));
    build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE");
    build_opts.add_option_if(is_signed_qasymm8, "-DQASYMM8_SIGNED");
    build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta));
    build_opts.add_option_if(is_data_type_float(dt) && info.is_log, "-DLOG_SOFTMAX");
    build_opts.add_option_if(is_data_type_float(dt), "-DMINVAL=" + ((dt == DataType::F16) ? std::string("-HALF_MAX") : std::string("-FLT_MAX")));
    build_opts.add_options_if(is_data_type_quantized_asymmetric(dt), prepare_quantized_softmax_build_options(qinfo.scale, beta).options());

    cl::NDRange lws_hint(cl::NullRange);
    std::string kernel_name = std::string("softmax_layer_max_shift_exp_sum_") + (is_data_type_quantized_asymmetric(dt) ? "quantized_" : "");

    // Configure parallel kernel if needed
    if(std::get<0>(parallel_reduction_info))
    {
        kernel_name += "parallel";
        bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0);
        build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size));

        // Handle boundary conditions.
        const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size;
        build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE");
        // Setting _lws_hint in this way can also communicate grid_size to ClLogits1DMaxShiftExpSumKernel::run().
        // A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0].
        lws_hint = cl::NDRange(_grid_size);
    }
    else
    {
        kernel_name += "serial";
    }

    // Create kernel.
    _kernel = create_kernel(compile_context, kernel_name, build_opts.options());

    // Configure window
    Window win = calculate_max_window(src, Steps(reduction_dim_size));
    IClKernel::configure_internal(win, lws_hint);

    ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}

Status ClLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo &src, const ITensorInfo &max, const ITensorInfo &dst, const ITensorInfo &sum)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(src, max, dst, sum));
    return Status{};
}

ClLogits1DMaxShiftExpSumKernel::ParallelReductionInfo ClLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size)
{
    bool         is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1);
    unsigned int vector_size           = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size;
    return std::make_tuple(is_parallel_reduction, vector_size);
}

void ClLogits1DMaxShiftExpSumKernel::run_op(ITensorPack &tensors, const Window &window, ::cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
    auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
    auto max = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_0));
    auto sum = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_1));

    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, max, sum);

    // Collapse window in Z dimension
    Window window_collapsed = window.collapse_if_possible(IClKernel::window(), Window::DimZ);

    // Reconfigure window in case of parallel reduction
    ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(src->info()->dimension(0));
    if(std::get<0>(parallel_reduction_info))
    {
        // Launch grid_size parallel work items
        window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size, 1));
    }

    // Get slices
    Window slice = window_collapsed.first_slice_window_3D();
    do
    {
        unsigned int idx = 0;
        // Set inputs
        add_3D_tensor_argument(idx, src, slice);
        add_3D_tensor_argument(idx, max, slice);
        add_3D_tensor_argument(idx, dst, slice);
        add_3D_tensor_argument(idx, sum, slice);
        enqueue(queue, *this, slice, lws_hint());
    }
    while(window_collapsed.slide_window_slice_3D(slice));
}

void ClLogits1DNormKernel::configure(const CLCompileContext &compile_context, const ITensorInfo &src, const ITensorInfo &sum, ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
    auto padding_info = get_padding_info({ &src, &dst, &sum });

    // Note: output should always have a scale of 1/256 and offset 0
    const bool                    is_quantized_asymmetric   = is_data_type_quantized_asymmetric(info.input_data_type);
    const DataType                output_data_type          = info.input_data_type;
    const QuantizationInfo        allowed_quantization_info = get_softmax_output_quantization_info(info.input_data_type, info.is_log);
    const UniformQuantizationInfo qinfo                     = src.quantization_info().uniform();

    // Output auto initialization if not yet initialized
    auto_init_if_empty(dst, src.clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(src, sum, dst, info));

    const auto         is_signed_qasymm8 = is_data_type_quantized_asymmetric_signed(info.input_data_type);
    const int          min_value         = is_signed_qasymm8 ? CL_SCHAR_MIN : 0;
    const unsigned int vector_size       = adjust_vec_size(16, src.dimension(0));

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(info.input_data_type));
    build_opts.add_option("-DMIN_VALUE=" + support::cpp11::to_string(min_value));
    build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
    build_opts.add_option("-DVECTOR_SIZE_LEFTOVER=" + support::cpp11::to_string(src.dimension(0) % vector_size));
    build_opts.add_option_if(is_data_type_quantized_asymmetric_signed(info.input_data_type), "-DQASYMM8_SIGNED");
    build_opts.add_options_if(is_quantized_asymmetric,
                              prepare_quantized_softmax_build_options(qinfo.scale, info.beta).options());
    build_opts.add_option_if(info.is_log, "-DLOG_SOFTMAX");

    // Create kernel
    std::string kernel_name = std::string("softmax_layer_norm") + (is_quantized_asymmetric ? "_quantized" : "");
    _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());

    // Configure window
    auto win = calculate_max_window(src, Steps(vector_size));
    ICLKernel::configure_internal(win);

    ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}

Status ClLogits1DNormKernel::validate(const ITensorInfo &src, const ITensorInfo &sum, const ITensorInfo &dst, const SoftmaxKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(src, sum, dst, info));

    return Status{};
}

void ClLogits1DNormKernel::run_op(ITensorPack &tensors, const Window &window, ::cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    auto src = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
    auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
    auto sum = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_INT_0));

    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, sum);

    Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
    Window slice            = window_collapsed.first_slice_window_3D();

    do
    {
        Window sum_slice = slice;
        sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));

        unsigned int idx = 0;
        // Set inputs
        add_3D_tensor_argument(idx, src, slice);
        add_3D_tensor_argument(idx, sum, sum_slice);
        add_3D_tensor_argument(idx, dst, slice);
        enqueue(queue, *this, slice, lws_hint());
    }
    while(window_collapsed.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute