aboutsummaryrefslogtreecommitdiff
path: root/src/core/experimental/dynamic_fusion/ClKernelBuildingImpl/Common.h
blob: e24c742fd7cae1d8656deb3bcc9c56fe720e580d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/*
 * Copyright (c) 2022 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#if defined(ENABLE_EXPERIMENTAL_DYNAMIC_FUSION)

#ifndef ARM_COMPUTE_EXPERIMENTAL_DYNAMICFUSION_IMPL_COMMON_H
#define ARM_COMPUTE_EXPERIMENTAL_DYNAMICFUSION_IMPL_COMMON_H

#include "arm_compute/core/CL/CLCompileContext.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/GPUTarget.h"
#include "src/core/common/Macros.h"
#include "support/Requires.h"
#include "support/StringSupport.h"

#include "src/core/experimental/dynamic_fusion/ClKernelBuildingAPI.h"

#include <queue>
#include <stack>
#include <string>
#include <unordered_set>

namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
/** We introduce the concept of *Shared Variables* in the context of kernel building.
 *  They are variables that can be accessed / shared among all the kernel components within a single kernel.
 *  For now we consider 2 groups of shared variables:
 *      Argument: The argument variables (parameters) of a kernel
 *      Automatic: The automatic variables declared inside a kernel
 *  All Shared Variables have the same kernel scope, and are thus visible to all kernel components
*/

enum class SharedVarIO
{
    Input,
    Output
};

enum class SharedVarGroup
{
    Argument, // Parameters to a kernel function
    Automatic // Automatic variables declared within the kernel body
};

/** Specifies a shared variable link for a component.
 * It describes all the information that's available when a component is constructed / added:
 *  e.g. its linkage (via ArgumentID and io) and its group
 * This is not shared variable on its own, but is used for instantiating a SharedVar when building the code
 */
struct SharedVarLink
{
    ArgumentID     arg_id{ g_arg_placeholder };
    SharedVarIO    io{ SharedVarIO::Input };
    SharedVarGroup group{ SharedVarGroup::Argument };
    bool           is_empty() const
    {
        return arg_id == g_arg_placeholder;
    }
};

/** A table of all the variables used in the kernel / blueprint
 * NOTE: the order they appear in the table is the order of their "declaration" in the component code, and is also their ID
 * NOTE: the variables all have the scope of the full kernel function
 */
class SharedVarTable
{
public:
    struct SharedVar
    {
        SharedVarGroup               group;
        std::string                  uniq_name; // Unique name, also the final variable name used in the built code
        ClKernelArgRuntimeDescriptor desc;      // Automatic variables can and should still be described using this struct
    };

    using Arguments = std::vector<SharedVar>;

    /** @note: The order of insertion is important. There is one precondition:
     *        PRECOND: The components have been sorted topologically / is being traversed in topological order
     *                 This ensures that all the consumer var links (Output, Automatic Links) can consume (return) the producer var links when they're referred
     */
    SharedVar add(SharedVarLink var_link, ClKernelArgRuntimeDescriptor runtime_desc, const std::string &name = "unnamed")
    {
        ARM_COMPUTE_ERROR_ON_MSG(var_link.is_empty(), "Non-empty SharedVarLink expected");
        auto              var_id = _num_var;
        std::stringstream ss;
        ss << name << "_" << var_id;
        const auto uniq_name = ss.str();
        SharedVar  var{ var_link.group, uniq_name, runtime_desc };

        if(var_link.group == SharedVarGroup::Argument)
        {
            _arguments.emplace(var_id, var);
            _num_var++;
            _var_id_lut[var_link.arg_id] = var_id;
        }
        else if(var_link.group == SharedVarGroup::Automatic)
        {
            if(var_link.io == SharedVarIO::Output)
            {
                _global_vars.emplace(var_id, var);
                _num_var++;
                _var_id_lut[var_link.arg_id] = var_id;
            }
            else
            {
                // For the input link, the var (and thus its arg_id) will always have been added by the time we get here if we traverse components in topological order
                var = get_var(var_link.arg_id);
            }
        }
        else
        {
            ARM_COMPUTE_ERROR("Unrecognised SharedVarGroup");
        }
        return var;
    }

    SharedVar get_var(ArgumentID arg_id) const
    {
        const auto var_id = _var_id_lut.at(arg_id); // arg_id has to exist in lut to begin with
        auto       it     = _global_vars.find(var_id);
        if(it != _global_vars.end())
        {
            return it->second;
        }
        it = _arguments.find(var_id);
        if(it != _arguments.end())
        {
            return it->second;
        }
        ARM_COMPUTE_ERROR("Cannot find component variable");
    }

    /** @note The arguments are returned in the order they are added
     */
    Arguments get_kernel_arguments() const
    {
        Arguments args{};
        for(const auto &a : _arguments)
        {
            args.push_back(a.second);
        }
        return args;
    }

private:
    using VarID = int32_t;

private:
    std::map<VarID, SharedVar>            _global_vars{};
    std::map<VarID, SharedVar>            _arguments{};
    std::unordered_map<ArgumentID, VarID> _var_id_lut{};
    VarID _num_var{ 0 };
};

enum class ComponentType
{
    Simple,
    Complex,
    Store
};

using ComponentID   = int32_t;
using ComponentList = std::vector<ComponentID>;
class IClKernelComponent
{
public:
    using Link = SharedVarLink;
    using Tag  = std::string;
    struct TagVal
    {
        TagVal() = default;
        TagVal(const SharedVarTable::SharedVar &var)
            : value{ var.uniq_name }
        {
        }

        template <typename T, ARM_COMPUTE_REQUIRES_TA(std::is_integral<T>::value)>
        TagVal(T val)
            : value{ support::cpp11::to_string(val) }
        {
        }

        TagVal(const std::string &val)
            : value{ val }
        {
        }

        TagVal(const char *val)
            : value{ std::string(val) }
        {
        }

        TagVal(const DataType &data_type)
            : value{ get_cl_type_from_data_type(data_type) }
        {
        }

        std::string value{};
    };
    using TagLUT = std::unordered_map<Tag, TagVal>; // Used to instantiating a code template / replacing tags
public:
    IClKernelComponent(const ClKernelBlueprint *blueprint)
        : _blueprint(blueprint)
    {
    }

    ARM_COMPUTE_DISALLOW_COPY_ALLOW_MOVE(IClKernelComponent);

    virtual ~IClKernelComponent()                        = default;
    virtual ComponentType     get_component_type() const = 0;
    virtual std::vector<Link> get_links() const          = 0;
    virtual std::string       name() const               = 0;

    // @note: some tags can be unused since they could be used only for the macros, or only for the component code
    static std::string replace_tags(const std::string &code_template, const TagLUT &tags)
    {
        std::string replaced_code    = "";
        bool        scanning_pattern = false;
        std::string pattern_found    = "";
        for(size_t i = 0; i < code_template.size() - 1; ++i)
        {
            if(!scanning_pattern)
            {
                if(code_template[i] == '{' && code_template[i + 1] == '{')
                {
                    i += 1;
                    scanning_pattern = true;
                    pattern_found    = "";
                }
                else
                {
                    replaced_code += code_template[i];
                }
            }
            else
            {
                if(code_template[i] == '}' && code_template[i + 1] == '}')
                {
                    i += 1;
                    scanning_pattern = false;
                    std::string err  = "Pattern " + pattern_found + " not found in tags";
                    ARM_COMPUTE_ERROR_ON_MSG(tags.find(pattern_found) == tags.end(), err.c_str());
                    replaced_code += tags.find(pattern_found)->second.value;
                }
                else
                {
                    pattern_found += code_template[i];
                }
            }
        }

        return replaced_code;
    }
    ComponentID id() const
    {
        return _id;
    }
    void set_id(ComponentID id)
    {
        _id = id;
    }

    virtual std::set<std::string> get_headers_list() const
    {
        return std::set<std::string> {};
    }

    virtual std::string get_additional_macros() const
    {
        return "";
    }

    virtual std::string get_component_code() const
    {
        return "";
    }

    virtual Window get_window() const
    {
        return Window{};
    }
    /** "Allocate" all shared variables used in a component to the @p vtable, and generate a TagLUT used to instantiate the component code
     *
     * @param vtable
     * @return TagLUT
     */
    virtual TagLUT allocate_vars(SharedVarTable &vtable) const = 0;

    virtual std::string get_dst_addr_calculation() const
    {
        return "";
    }

    virtual CLBuildOptions generate_build_options() const
    {
        return CLBuildOptions{};
    }

protected:
    const ClKernelBlueprint *_blueprint;

private:
    ComponentID _id{};
};

using ComponentUniquePtr = std::unique_ptr<IClKernelComponent>;

/** Intermediate representation of the final, complete kernel source.
 */
struct ClKernelBlueprint::Implementation
{
public:
    Implementation()  = default;
    ~Implementation() = default;

public:
    ArgumentID add_kernel_argument(const ClTensorDescriptor &tensor_desc)
    {
        _kernel_arguments.insert(std::make_pair(_num_args, tensor_desc));
        _shared_var_group_lut[_num_args] = SharedVarGroup::Argument;
        return _num_args++;
    }

    ArgumentID add_intermediate_tensor()
    {
        _intermediate_tensors.insert(_num_args);
        _shared_var_group_lut[_num_args] = SharedVarGroup::Automatic;
        return _num_args++;
    }

    void set_tile_info(const TileDescriptor &tile_info)
    {
        _tile_info = tile_info;
    }

    SharedVarGroup group(ArgumentID arg_id) const
    {
        if(arg_id == g_arg_placeholder)
        {
            // In case of placeholder, don't care what we return;
            return SharedVarGroup::Argument;
        }
        return _shared_var_group_lut.at(arg_id);
    }

    void validate_arg_ids(std::initializer_list<ArgumentID> args) const
    {
        for(const auto arg_id : args)
        {
            ARM_COMPUTE_UNUSED(arg_id);
            ARM_COMPUTE_ERROR_ON_MSG(_kernel_arguments.find(arg_id) == _kernel_arguments.end() && _intermediate_tensors.find(arg_id) == _intermediate_tensors.end() && arg_id != g_arg_placeholder,
                                     "Trying to use an argument that hasn't been added to the blueprint");
        }
    }

    void add_component(ComponentUniquePtr component)
    {
        if(component->get_component_type() == ComponentType::Complex)
        {
            ++_num_complex_components;
            ARM_COMPUTE_ERROR_ON_MSG(_num_complex_components > 1, "Only one complex component per blueprint is supported.");
        }

        // This flag specifies if the current component is the root of the component graph
        // If the root is set to -1, it means that a root hasn't been added yet
        bool is_graph_root = true;

        // Get an unique ID for the component that's being added
        const ComponentID component_id = _num_components++;
        component->set_id(component_id);

        // Add this component to the component graph. Don't connect it to anything yet
        _component_graph.emplace(component_id, ComponentList{});

        int32_t positional_arg = 0;

        // For every { arg_id, arg_io } passed along with this component...
        for(const auto &link : component->get_links())
        {
            const ArgumentID &arg_id = link.arg_id;
            const SharedVarIO &arg_io = link.io;

            // A component is considered root only if all its input arguments are kernel arguments (or placeholders, which means nullptr)
            // This performs a check on every argument, and if one of them doesn't respect the condition, the component is not considered root
            is_graph_root &= (_kernel_arguments.find(arg_id) != _kernel_arguments.end()) || (arg_io == SharedVarIO::Output) || (arg_id == g_arg_placeholder);

            // Add the arg_id to the map describing the input/output relationship between an argument and the components that use it, if it doesn't yet exist there
            if(_outgoing_components.find(arg_id) == _outgoing_components.end())
            {
                _outgoing_components.emplace(arg_id, ComponentList{});
                _incoming_components.emplace(arg_id, ComponentList{});
            }

            // If it's an input argument, connect any other component that has it as output with this component
            // Additionally, set this component as one that treats this argument as "Input" (append to index 0)
            // This is used so that we keep track of whether two components use the same argument, one as input and one as output
            if(arg_io == SharedVarIO::Input)
            {
                for(const auto &prev_component : _incoming_components[arg_id])
                {
                    _component_graph[prev_component].push_back(component_id);
                }

                _outgoing_components[arg_id].push_back(component_id);
            }
            // If it's an output argument, connect this component with any other component that has it as input
            // Additionally, set this component as one that treats this argument as "Output" (append to index 1)
            else
            {
                if(component->get_component_type() == ComponentType::Store)
                {
                    ARM_COMPUTE_ERROR_ON_MSG(_dst_id >= 0, "Trying to add more than one dst argument to the graph");
                    _dst_id = arg_id;
                }

                for(const auto &subseq_component : _outgoing_components[arg_id])
                {
                    _component_graph[component_id].push_back(subseq_component);
                }

                _incoming_components[arg_id].push_back(component_id);
            }

            ++positional_arg;
        }

        if(is_graph_root)
        {
            ARM_COMPUTE_ERROR_ON_MSG(_graph_root >= 0, "Trying to add more than one root to the graph");
            _graph_root = component_id;
        }

        // Finally, add this component to the dictionary of components
        _components.insert(std::make_pair(component_id, std::move(component)));
    }

    std::string build_kernel_name() const
    {
        std::string name = "";

        traverse([&](std::stack<ComponentID> stack)
        {
            name += _components.find(stack.top())->second->name() + (stack.size() > 2 ? "___" : "");
        });

        return name;
    }

    std::string build_code()
    {
        ARM_COMPUTE_ERROR_ON_MSG(_graph_root < 0, "No root found in the component graph");

        // These data structures will hold the data from all the components in the blueprint
        std::set<std::string>    headers_list{};
        std::set<std::string>    additional_macros{};
        std::vector<std::string> component_codes{}; // vector because order matters

        // Go through the components graph (topological sort) and fill the data structures above
        auto stack = topological_sort();
        while(!stack.empty())
        {
            auto  curr_component_id = stack.top();
            auto &curr_component    = _components.find(curr_component_id)->second;

            auto       curr_headers_list      = curr_component->get_headers_list();
            auto       curr_additional_macros = curr_component->get_additional_macros();
            auto       curr_component_code    = curr_component->get_component_code();
            const auto var_lut                = curr_component->allocate_vars(_vtable); // Ideally can be merged with get_component_code once we have finer-grained code generation technique
            component_codes.push_back(IClKernelComponent::replace_tags(curr_component_code, var_lut));

            headers_list.insert(curr_headers_list.begin(), curr_headers_list.end());
            if(!curr_additional_macros.empty()) // Some components might not have any
            {
                additional_macros.insert(IClKernelComponent::replace_tags(curr_additional_macros, var_lut));
            }

            stack.pop();
        }

        // This section assembles the data gathered by traversing the graph into the string "code"
        std::string code = "";

        for(auto &header : headers_list)
        {
#if defined(EMBEDDED_KERNELS)
            code += CLKernelLibrary::get().get_program(header).first;
#else  // defined(EMBEDDED_KERNELS)
            code += "#include \"" + header + "\"\n";
#endif // defined(EMBEDDED_KERNELS)
        }

        for(auto &macros : additional_macros)
        {
            code += macros;
        }

        code += generate_kernel_signature(_vtable.get_kernel_arguments());

        code += "\n{\n\n";

        code += "    //------------------ START KERNEL_BUILDER_COORDINATE ---------------------\n\n";
        code += generate_global_section();
        code += "    //------------------ END KERNEL_BUILDER_COORDINATE ---------------------\n";

        for(auto &component_code : component_codes)
        {
            code += component_code;
        }

        code += "}\n";

        return code;
    }

    std::string build_config_id() const
    {
        return "";
    }

    CLBuildOptions build_options() const
    {
        CLBuildOptions build_opts{};

        traverse([&](std::stack<ComponentID> stack)
        {
            build_opts.add_options(_components.find(stack.top())->second->generate_build_options().options());
        });

        return build_opts;
    }

    TileDescriptor get_tile_info() const
    {
        return _tile_info;
    }

    Window get_execution_window() const
    {
        ARM_COMPUTE_ERROR_ON_MSG(_graph_root < 0, "No root found in the component graph");
        ARM_COMPUTE_ERROR_ON_MSG(_dst_id == -1, "Destination Tensor Id should be ready before calling get_execution_window()");

        return _components.find(_graph_root)->second->get_window();
    }

    ArgumentID get_dst_id() const
    {
        return _dst_id;
    }

    ClKernelArgList get_arguments() const
    {
        ClKernelArgList arg_list{};
        for(const auto &arg_var : _vtable.get_kernel_arguments())
        {
            arg_list.push_back(arg_var.desc);
        }
        return arg_list;
    }

    const ClTensorDescriptor *get_kernel_argument(const ArgumentID id) const
    {
        auto it = _kernel_arguments.find(id);
        if(it != _kernel_arguments.end())
        {
            return &_kernel_arguments.find(id)->second;
        }
        return nullptr;
    }

    ITensorInfo *get_kernel_argument_info(const ArgumentID id) const
    {
        const ClTensorDescriptor *arg_desc = get_kernel_argument(id);
        if(arg_desc != nullptr)
        {
            return arg_desc->tensor_info;
        }
        return nullptr;
    }

private:
    void topological_sort_utility(ComponentID component_id, std::unordered_set<ComponentID> &visited, std::stack<ComponentID> &stack) const
    {
        visited.insert(component_id);

        for(auto connected_component : _component_graph.find(component_id)->second)
        {
            if(visited.find(connected_component) == visited.end())
            {
                topological_sort_utility(connected_component, visited, stack);
            }
        }

        stack.push(component_id);
    }

    std::stack<ComponentID> topological_sort() const
    {
        std::stack<ComponentID>         stack{};
        std::unordered_set<ComponentID> visited{};

        topological_sort_utility(_graph_root, visited, stack);

        return stack;
    }

    void traverse(const std::function<void(std::stack<ComponentID>)> &func) const
    {
        std::stack<ComponentID> stack = topological_sort();

        while(!stack.empty())
        {
            func(stack);
            stack.pop();
        }
    }

    std::string generate_argument_declaration(const SharedVarTable::SharedVar &var) const
    {
        ARM_COMPUTE_ERROR_ON_MSG(var.group != SharedVarGroup::Argument, "An argument declaration can only be generated from a kernel argument");
        std::string code;
        switch(var.desc.tensor_arg_type)
        {
            case TensorArgType::Vector:
            {
                code += "\n    VECTOR_DECLARATION(" + var.uniq_name + ")";
                break;
            }
            case TensorArgType::Image:
            {
                code += "\n    IMAGE_DECLARATION(" + var.uniq_name + ")";
                break;
            }
            case TensorArgType::Image_3D:
            {
                code += "\n    IMAGE_DECLARATION(" + var.uniq_name + "),";
                code += "\n    uint " + var.uniq_name + "_stride_z";
                break;
            }
            case TensorArgType::Image_3D_Export_To_ClImage2D:
            {
                code += "\n    __read_only image2d_t " + var.uniq_name + "_img,";
                code += "\n    uint " + var.uniq_name + "_stride_z";
                break;
            }
            case TensorArgType::Tensor_4D_t_Buffer:
            {
                code += "\n    TENSOR4D_T(" + var.uniq_name + ", BUFFER)";
                break;
            }
            case TensorArgType::Tensor_4D_t_Image:
            {
                code += "\n    TENSOR4D_T(" + var.uniq_name + ", IMAGE)";
                break;
            }
            default:
            {
                ARM_COMPUTE_ERROR("Unsupported declaration generation for TensorArgType");
            }
        }
        return code;
    }

    std::string generate_kernel_signature(const SharedVarTable::Arguments &argument_list) const
    {
        std::string code = "\n__kernel void " + build_kernel_name() + "(";

        for(const auto &arg : argument_list)
        {
            code += generate_argument_declaration(arg) + ",";
        }

        code[code.length() - 1] = ')';

        return code;
    }

    std::string generate_global_section() const
    {
        std::string code = "";
        code += "    uint g_x = get_global_id(0);\n";
        code += "    uint g_y = get_global_id(1);\n";
        code += "    uint g_z = get_global_id(2);\n\n";

        size_t tile_dim_x = _tile_info.empty() ? 1 : _tile_info.tile_dims.x();
        size_t tile_dim_y = _tile_info.empty() ? 1 : _tile_info.tile_dims.y();

        switch(_tile_info.clipping)
        {
            case ClippingStrategy::TOP_LEFT:
                code += "    const bool g_cond_x = (g_x == 0);\n";
                code += "    const bool g_cond_y = (g_y == 0);\n";
                break;
            case ClippingStrategy::TOP_RIGHT:
                code += "    const bool g_cond_x = ((g_x + 1) * " + std::to_string(tile_dim_x) + " >= " + std::to_string(_tile_info.boundaries.x()) + ");\n";
                code += "    const bool g_cond_y = (g_y == 0);\n";
                break;
            case ClippingStrategy::BOTTOM_LEFT:
                code += "    const bool g_cond_x = (g_x == 0);\n";
                code += "    const bool g_cond_y = ((g_y + 1) * " + std::to_string(tile_dim_y) + " >= " + std::to_string(_tile_info.boundaries.y()) + ");\n";
                break;
            case ClippingStrategy::BOTTOM_RIGHT:
                code += "    const bool g_cond_x = ((g_x + 1) * " + std::to_string(tile_dim_x) + " >= " + std::to_string(_tile_info.boundaries.x()) + ");\n";
                code += "    const bool g_cond_y = ((g_y + 1) * " + std::to_string(tile_dim_y) + " >= " + std::to_string(_tile_info.boundaries.y()) + ");\n";
                break;
            default:
                ARM_COMPUTE_ERROR("Unsupported clipping strategy");
        }

        code += "\n    REPEAT_VAR_INIT_TO_CONST(" + std::to_string(tile_dim_y) + ", uint, g_zout, 0);\n";
        code += "    REPEAT_VAR_INIT_TO_CONST(16, uint, g_zero, 0);\n\n";

        return code;
    }

    TileDescriptor _tile_info{};

    int32_t _num_args{};
    int32_t _num_components{};
    int32_t _num_complex_components{};

    ArgumentID _dst_id{ -1 }; // Initially set to -1, which means the graph has no dst yet, since node IDs are positive numbers

    // Argument, components and intermediate tensors IDs with corresponding ptrs (except intermediate)
    std::unordered_map<ComponentID, ComponentUniquePtr> _components{};
    std::unordered_map<ArgumentID, ClTensorDescriptor>  _kernel_arguments{};
    std::unordered_set<ArgumentID> _intermediate_tensors{};
    // Argument group lookup. Can be replaced by extending the ArgumentID type to include group info
    std::unordered_map<ArgumentID, SharedVarGroup> _shared_var_group_lut{};

    // Tracks all variables (e.g.: kernel arguments, kernel "global variables")
    SharedVarTable _vtable{};

    // Component directed graph (represented by an adjecency list of Component IDs)
    // This is used to understand the ordering and bindings between components when generating the kernel
    // It's initially set to -1 which means the graph has no root yet, since node IDs are positive numbers
    ComponentID _graph_root{ -1 };
    std::unordered_map<ComponentID, ComponentList> _component_graph{};

    // Additional data structures used to define the relationships between components and arguments
    // For each argument, it contains the list of components that consider it as an incoming or an outgoing argument
    // E.g. tensor0  -> component0 -> tensor1
    // _outgoing_components[tensor0] == {component0} (component0 is the outgoing component of tensor0. Component0 treats tensor0 as an input tensor)
    // _incoming_components[tensor1] == {component0} (component0 is the incoming component of tensor1. Component1 treats tensor1 as an output tensor)
    std::unordered_map<ArgumentID, ComponentList> _outgoing_components{};
    std::unordered_map<ArgumentID, ComponentList> _incoming_components{};
};

} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute
#endif //ARM_COMPUTE_EXPERIMENTAL_DYNAMICFUSION_IMPL_COMMON_H

#endif // defined(ENABLE_EXPERIMENTAL_DYNAMIC_FUSION)