aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/softmax/impl/NEON/list.h
blob: 1aa7e8fac74bfac0fe9f4582ec56a3cea2570adc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H
#define SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H

#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "support/SaturateCast.h"

namespace arm_compute
{
namespace cpu
{
namespace
{
template <typename float_vec_type, typename int_vec_type>
int_vec_type convert_float_to_int(const float_vec_type &in);

template <typename float_vec_type, typename int_vec_type>
float_vec_type convert_int_to_float(const int_vec_type &in);

template <>
uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
{
    uint8x16_t out;
    convert_float32x4x4_to_uint8x16(in, out);
    return out;
}

template <>
int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
{
    int8x16_t out;
    convert_float32x4x4_to_int8x16(in, out);
    return out;
}

template <>
float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
{
    return convert_uint8x16_to_float32x4x4(in);
}

template <>
float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
{
    return convert_int8x16_to_float32x4x4(in);
}
} // namespace

template <typename T>
void neon_logits_1d_max(const ITensor *in, ITensor *out, const Window &window)
{
    /** NEON vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    constexpr int window_step_x  = 16 / sizeof(T);
    const auto    window_start_x = static_cast<int>(window.x().start());
    const auto    window_end_x   = static_cast<int>(window.x().end());

    Window win{ window };
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    Iterator input(in, win);
    Iterator output(out, win);

    const int sum_stages = log2(window_step_x / 2);
    execute_window_loop(win, [&](const Coordinates &)
    {
        // Get pointers
        const auto in_ptr  = reinterpret_cast<const T *>(input.ptr());
        const auto out_ptr = reinterpret_cast<T *>(output.ptr());

        // Init max value
        auto vec_max = wrapper::vdup_n(support::cpp11::lowest<T>(), ExactTagType{});
        int  x       = window_start_x;

        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const auto current_value = wrapper::vloadq(in_ptr + x);
            vec_max                  = wrapper::vmax(vec_max, current_value);
        }
        auto carry_max = wrapper::vpmax(wrapper::vgethigh(vec_max), wrapper::vgetlow(vec_max));

        for(int i = 0; i < sum_stages; ++i)
        {
            carry_max = wrapper::vpmax(carry_max, carry_max);
        }
        T max_val = wrapper::vgetlane(carry_max, 0);

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            max_val = *(in_ptr + x) > max_val ? *(in_ptr + x) : max_val;
        }

        *out_ptr = max_val;
    },
    input, output);
}

template <typename T>
void neon_softmax_logits_1d_quantized(const ITensor *in, const ITensor *max, void *const tmp,
                                      ITensor *out, float beta, bool is_log, const Window &window)
{
    static_assert(std::is_same<T, qasymm8_t>::value
                  || std::is_same<T, qasymm8_signed_t>::value,
                  "quantized type should be either qasymm8_t or qasymm8_signed_t.");

    const int start_x     = in->info()->valid_region().anchor.x();
    const int input_width = in->info()->valid_region().shape.x();

    const float scale_beta     = -beta * in->info()->quantization_info().uniform().scale;
    const auto  scale_beta_vec = vdupq_n_f32(scale_beta);

    Iterator      in_it(in, window);
    Iterator      max_it(max, window);
    Iterator      out_it(out, window);
    constexpr int vec_size = 16;

    execute_window_loop(window, [&](const Coordinates &)
    {
        /* Get pointers */
        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
        const auto tmp_ptr = reinterpret_cast<float *>(tmp);

        float sum{};
        float sum_inversed{};

        /* Compute exponentials and sum */
        {
            /* Get max value */
            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
            const auto vec_max = wrapper::vdup_n(max_val, wrapper::traits::vector_128_tag{});

            /* Init sum to zero */
            float32x4x4_t vec_sum =
            {
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
                vdupq_n_f32(0.f),
            };

            /* Loop over row and compute exponentials and sum */
            int x = 0;
            for(; x <= (input_width - vec_size); x += vec_size)
            {
                auto vec_elements     = wrapper::vloadq(in_ptr + x);
                vec_elements          = wrapper::vqsub(vec_max, vec_elements);
                auto vec_elements_flt = convert_int_to_float<float32x4x4_t>(vec_elements);

                if(is_log)
                {
                    vec_elements_flt.val[0] = vmulq_f32(vec_elements_flt.val[0], scale_beta_vec);
                    vec_elements_flt.val[1] = vmulq_f32(vec_elements_flt.val[1], scale_beta_vec);
                    vec_elements_flt.val[2] = vmulq_f32(vec_elements_flt.val[2], scale_beta_vec);
                    vec_elements_flt.val[3] = vmulq_f32(vec_elements_flt.val[3], scale_beta_vec);
                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vexpq_f32(vec_elements_flt.val[0]));
                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vexpq_f32(vec_elements_flt.val[1]));
                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vexpq_f32(vec_elements_flt.val[2]));
                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vexpq_f32(vec_elements_flt.val[3]));
                }
                else
                {
                    vec_elements_flt.val[0] = vexpq_f32(vmulq_f32(vec_elements_flt.val[0], scale_beta_vec));
                    vec_elements_flt.val[1] = vexpq_f32(vmulq_f32(vec_elements_flt.val[1], scale_beta_vec));
                    vec_elements_flt.val[2] = vexpq_f32(vmulq_f32(vec_elements_flt.val[2], scale_beta_vec));
                    vec_elements_flt.val[3] = vexpq_f32(vmulq_f32(vec_elements_flt.val[3], scale_beta_vec));
                    vec_sum.val[0]          = vaddq_f32(vec_sum.val[0], vec_elements_flt.val[0]);
                    vec_sum.val[1]          = vaddq_f32(vec_sum.val[1], vec_elements_flt.val[1]);
                    vec_sum.val[2]          = vaddq_f32(vec_sum.val[2], vec_elements_flt.val[2]);
                    vec_sum.val[3]          = vaddq_f32(vec_sum.val[3], vec_elements_flt.val[3]);
                }

                vst4q_f32(tmp_ptr + x, vec_elements_flt);
            }

            /* Reduce sum */
            const auto sum_16_byte = vaddq_f32(vaddq_f32(vec_sum.val[0], vec_sum.val[1]), vaddq_f32(vec_sum.val[2], vec_sum.val[3]));
            auto       sum_res     = vpadd_f32(vget_high_f32(sum_16_byte), vget_low_f32(sum_16_byte));
            sum_res                = vpadd_f32(sum_res, sum_res);
            sum                    = wrapper::vgetlane(sum_res, 0);

            /* Run remaining elements */
            for(; x < input_width; ++x)
            {
                float element{};
                if(is_log)
                {
                    element = (max_val - in_ptr[x]) * scale_beta;
                    sum += std::exp(element);
                }
                else
                {
                    element = std::exp((max_val - in_ptr[x]) * scale_beta);
                    sum += element;
                }

                tmp_ptr[x] = element;
            }

            if(!is_log)
            {
                sum_inversed = 256.f / sum;
            }
            else
            {
                sum = std::log(sum);
            }
        }

        /* Normalize exponentials */
        {
            constexpr bool is_qasymm8_signed = std::is_same<T, qasymm8_signed_t>::value;
            /* Loop over row and compute softmax */
            int x = 0;
            for(; x <= (input_width - vec_size); x += vec_size)
            {
                using int_vec_type   = wrapper::traits::neon_vector_t<T, 16>;
                float32x4x4_t vec_in = vld4q_f32(tmp_ptr + x);
                int_vec_type  normalized_value{};
                if(is_log)
                {
                    const float32x4x4_t sub =
                    {
                        vsubq_f32(vec_in.val[0], vdupq_n_f32(sum)),
                        vsubq_f32(vec_in.val[1], vdupq_n_f32(sum)),
                        vsubq_f32(vec_in.val[2], vdupq_n_f32(sum)),
                        vsubq_f32(vec_in.val[3], vdupq_n_f32(sum)),
                    };
                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(sub);
                }
                else
                {
                    float32x4x4_t mul =
                    {
                        vmulq_f32(vec_in.val[0], vdupq_n_f32(sum_inversed)),
                        vmulq_f32(vec_in.val[1], vdupq_n_f32(sum_inversed)),
                        vmulq_f32(vec_in.val[2], vdupq_n_f32(sum_inversed)),
                        vmulq_f32(vec_in.val[3], vdupq_n_f32(sum_inversed)),
                    };

                    if(is_qasymm8_signed)
                    {
                        const auto offset_vec = wrapper::vdup_n(128.f, wrapper::traits::vector_128_tag{});
                        mul.val[0]            = wrapper::vsub(mul.val[0], offset_vec);
                        mul.val[1]            = wrapper::vsub(mul.val[1], offset_vec);
                        mul.val[2]            = wrapper::vsub(mul.val[2], offset_vec);
                        mul.val[3]            = wrapper::vsub(mul.val[3], offset_vec);
                    }

                    normalized_value = convert_float_to_int<float32x4x4_t, int_vec_type>(mul);
                }
                wrapper::vstore(out_ptr + x, normalized_value);
            }
            /* Run remaining elements */
            for(; x < input_width; ++x)
            {
                if(is_log)
                {
                    out_ptr[x] = utils::cast::saturate_cast<T>(tmp_ptr[x] - sum);
                }
                else
                {
                    out_ptr[x] = utils::cast::saturate_cast<T>((tmp_ptr[x] * sum_inversed) - (is_qasymm8_signed ? 128.f : 0));
                }
            }
        }
    },
    in_it, max_it, out_it);
}

template <typename T>
void neon_softmax_logits_1d_float(const ITensor *in, const ITensor *max, void *const tmp,
                                  ITensor *out, const float beta, bool is_log, const Window &window)
{
    const int start_x     = in->info()->valid_region().anchor.x();
    const int input_width = in->info()->valid_region().shape.x();

    Iterator in_it(in, window);
    Iterator max_it(max, window);
    Iterator out_it(out, window);

    /** NEON vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    constexpr int vec_size   = 16 / sizeof(T);
    const int     sum_stages = log2(vec_size / 2);

    execute_window_loop(window, [&](const Coordinates &)
    {
        /* Get pointers */
        const auto in_ptr  = reinterpret_cast<const T *>(in_it.ptr()) + start_x;
        const auto out_ptr = reinterpret_cast<T *>(out_it.ptr()) + start_x;
        const auto tmp_ptr = reinterpret_cast<T *>(tmp);

        T sum{};
        T sum_inversed{};

        /* Compute exponentials and sum */
        {
            /* Get max value */
            const auto max_val = *reinterpret_cast<const T *>(max_it.ptr());
            const auto vec_max = wrapper::vdup_n(max_val, ExactTagType{});

            /* Init sum to zero */
            auto vec_sum = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});

            /* Loop over row and compute exponentials and sum */
            int x = 0;
            for(; x <= (input_width - vec_size); x += vec_size)
            {
                auto vec_elements = wrapper::vloadq(in_ptr + x);
                vec_elements      = wrapper::vsub(vec_elements, vec_max);
                if(is_log)
                {
                    vec_elements = wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{}));
                    vec_sum      = wrapper::vadd(vec_sum, wrapper::vexpq(vec_elements));
                }
                else
                {
                    vec_elements = wrapper::vexpq(wrapper::vmul(vec_elements, wrapper::vdup_n(static_cast<T>(beta), ExactTagType{})));
                    vec_sum      = wrapper::vadd(vec_sum, vec_elements);
                }
                wrapper::vstore(tmp_ptr + x, vec_elements);
            }

            /* Reduce sum */
            auto sum_res = wrapper::vpadd(wrapper::vgethigh(vec_sum), wrapper::vgetlow(vec_sum));
            for(int i = 0; i < sum_stages; ++i)
            {
                sum_res = wrapper::vpadd(sum_res, sum_res);
            }
            sum = wrapper::vgetlane(sum_res, 0);

            /* Run remaining elements */
            for(; x < input_width; ++x)
            {
                T element{};

                if(is_log)
                {
                    element = (in_ptr[x] - max_val) * beta;
                    sum += std::exp(element);
                }
                else
                {
                    element = std::exp((in_ptr[x] - max_val) * beta);
                    sum += element;
                }
                tmp_ptr[x] = element;
            }

            if(!is_log)
            {
                sum_inversed = T(1) / sum;
            }
            else
            {
                sum = static_cast<T>(std::log(sum));
            }
        }

        /* Normalize exponentials */
        {
            /* Loop over row and compute softmax */
            int x = 0;
            for(; x <= (input_width - vec_size); x += vec_size)
            {
                auto vec_in           = wrapper::vloadq(tmp_ptr + x);
                auto normalized_value = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
                if(is_log)
                {
                    normalized_value = wrapper::vsub(vec_in, wrapper::vdup_n(static_cast<T>(sum), ExactTagType{}));
                }
                else
                {
                    normalized_value = wrapper::vmul(vec_in, wrapper::vdup_n(static_cast<T>(sum_inversed), ExactTagType{}));
                }
                wrapper::vstore(out_ptr + x, normalized_value);
            }
            /* Run remaining elements */
            for(; x < input_width; ++x)
            {
                if(is_log)
                {
                    out_ptr[x] = tmp_ptr[x] - sum;
                }
                else
                {
                    out_ptr[x] = tmp_ptr[x] * sum_inversed;
                }
            }
        }
    },
    in_it, max_it, out_it);
}

} // namespace cpu
} // namespace arm_compute

#endif /* SRC_CORE_NEON_KERNELS_SOFTMAX_LIST_H */