aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/elementwise/neon/elementwise_quantized_list.h
blob: 1ff4632f5ca05bad2e48dd6e01c5f1223d21b285 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H
#define SRC_CORE_NEON_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H

#include "src/core/cpu/kernels/elementwise/neon/elementwise_list.h"

namespace arm_compute
{
namespace cpu
{
float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
    qasymm8x16_t        x = vld1q_u8(input1_ptr);
    const float32x4x4_t out =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
        }
    };
    return out;
}

float32x4x4_t load_quantized_signed(const int8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
    qasymm8x16_signed_t x = vld1q_s8(input1_ptr);
    const float32x4x4_t out =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
        }
    };
    return out;
}

void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out)
{
    const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1])));
    const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3])));
    vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}

void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out)
{
    const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
    const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
    vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}

void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
    int32x4x4_t out =
    {
        {
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
        }
    };
    store_quantized(output_ptr, out);
}

void store_quantized_signed(int8_t *output_ptr, const int32x4x4_t &out)
{
    const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
    const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
    vst1q_s8(output_ptr, vcombine_s8(pa, pb));
}

void store_quantized_signed(int8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
    int32x4x4_t out =
    {
        {
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
        }
    };
    store_quantized_signed(output_ptr, out);
}

template <ArithmeticOperation op>
inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    return quantize_qasymm8(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}

template <ArithmeticOperation op>
inline int8_t elementwise_arithm_op_quantized_signed_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    return quantize_qasymm8_signed(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}

template <ArithmeticOperation op>
inline float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
    using neon_vector_float = wrapper::traits::neon_vector<float, 4>;
    float32x4x4_t out =
    {
        {
            elementwise_arithm_op<op, neon_vector_float>(a.val[0], b.val[0]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[1], b.val[1]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[2], b.val[2]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[3], b.val[3]),
        }
    };
    return out;
}

template <ComparisonOperation op>
inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    ARM_COMPUTE_UNUSED(qinfo);
    return elementwise_comp_op_scalar<op>(a, b);
}

template <ComparisonOperation op>
inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
    uint32x4x4_t out =
    {
        {
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[0], b.val[0]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[1], b.val[1]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[2], b.val[2]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[3], b.val[3])
        }
    };
    return out;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
                                                const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
                                                int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                float32x4_t voffseto, float32x4_t invvscaleo)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        // Get inputs and compute output
        const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
        const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
        store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_singed_loop(int window_start_x, int window_end_x, int window_step_x,
                                                       const int8_t *input1_ptr, const int8_t *input2_ptr, int8_t *output_ptr,
                                                       int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                       float32x4_t voffseto, float32x4_t invvscaleo)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        // Get inputs and compute output
        const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
        const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
        store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                          const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                          int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                          float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                                 const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, int8_t *output_ptr,
                                                                 int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                                 float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
                                              const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
                                              int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                              float32x4_t voffseto, float32x4_t invvscaleo)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_loop(int window_start_x, int window_end_x, int window_step_x,
                                                     const int8_t *input1_ptr, const int8_t *input2_ptr, uint8_t *output_ptr,
                                                     int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                     float32x4_t voffseto, float32x4_t invvscaleo)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                        const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                        int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                        float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                               const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                               int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                               float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                              uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                              int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
                                                    float32x4_t, float32x4_t, const bool),
                              int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *,
                                               int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                               float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset + 0.5f);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());

            const uint8_t       broadcast_value  = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_u8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

void elementwise_comp_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                                       uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                                       int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
                                                             float32x4_t, float32x4_t, const bool),
                                       int (*neon_func)(int, int, int, const int8_t *, const int8_t *, uint8_t *,
                                                        int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                                        float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());

            const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

void elementwise_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                                     int8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                                     int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, int8_t *, int32x4_t, float32x4_t,
                                                           float32x4_t, float32x4_t, const bool),
                                     int (*neon_func)(int, int, int, const int8_t *, const int8_t *, int8_t *,
                                                      int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                                      float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<int8_t *>(output.ptr());

            const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

template <ArithmeticOperation op>
void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar<op>,
                             &elementwise_arithm_op_quantized_broadcast_loop<op>,
                             &elementwise_arithm_op_quantized_loop<op>);
}
template <ArithmeticOperation op>
void elementwise_arithm_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized_signed(in1, in2, out, window, &elementwise_arithm_op_quantized_signed_scalar<op>,
                                    &elementwise_arithm_op_quantized_signed_broadcast_loop<op>,
                                    &elementwise_arithm_op_quantized_singed_loop<op>);
}

template <ComparisonOperation op>
void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
                             &elementwise_comp_op_quantized_broadcast_loop<op>,
                             &elementwise_comp_op_quantized_loop<op>);
}

template <ComparisonOperation op>
void elementwise_comp_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_comp_quantized_signed(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
                                      &elementwise_comp_op_quantized_signed_broadcast_loop<op>,
                                      &elementwise_comp_op_quantized_signed_loop<op>);
}
} // namespace cpu
} // namespace arm_compute

#endif /* SRC_CORE_NEON_KERNELS_ELEMENTWISE_QUANTIZED_LIST_H */