aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/add/neon/list.h
blob: 964bdccca34023679a3d98ff991cba1625d9ba52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 * Copyright (c) 2020-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef SRC_CORE_NEON_KERNELS_ADD_LIST_H
#define SRC_CORE_NEON_KERNELS_ADD_LIST_H

#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
#include "src/core/NEON/wrapper/wrapper.h"

namespace arm_compute
{
namespace cpu
{
#define DECLARE_ADD_KERNEL(func_name) \
    void func_name(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)

DECLARE_ADD_KERNEL(add_qasymm8_neon);
DECLARE_ADD_KERNEL(add_qasymm8_signed_neon);
DECLARE_ADD_KERNEL(add_qsymm16_neon);
DECLARE_ADD_KERNEL(add_s16_u8_s16_neon);
DECLARE_ADD_KERNEL(add_u8_s16_s16_neon);
DECLARE_ADD_KERNEL(add_u8_u8_s16_neon);

#undef DECLARE_ADD_KERNEL

template <typename ScalarType>
void add_same_neon(const ITensor *src0, const ITensor *src1, ITensor *dst, const ConvertPolicy &policy, const Window &window)
{
    /** Neon vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<ScalarType, wrapper::traits::BitWidth::W128>;

    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    constexpr int window_step_x         = 16 / sizeof(ScalarType);
    const auto    window_start_x        = static_cast<int>(window.x().start());
    const auto    window_end_x          = static_cast<int>(window.x().end());
    const bool    is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();

    if(is_broadcast_across_x)
    {
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? src1 : src0;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src1 : src0;

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<ScalarType *>(output.ptr());

            const ScalarType broadcast_value     = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
            const auto       broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});

            // Compute S elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
                const auto res             = (policy == ConvertPolicy::SATURATE) ? wrapper::vqadd(broadcast_value_vec, non_broadcast_v) : wrapper::vadd(broadcast_value_vec, non_broadcast_v);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
                *(output_ptr + x)          = (policy == ConvertPolicy::SATURATE) ? wrapper::add_sat(broadcast_value, non_broadcast_v) : broadcast_value + non_broadcast_v;
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(src0, input1_win);
        Iterator input2(src1, input2_win);
        Iterator output(dst, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());

            // Compute S elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto val1 = wrapper::vloadq(input1_ptr + x);
                const auto val2 = wrapper::vloadq(input2_ptr + x);
                const auto res  = (policy == ConvertPolicy::SATURATE) ? wrapper::vqadd(val1, val2) : wrapper::vadd(val1, val2);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto val1   = *(input1_ptr + x);
                const auto val2   = *(input2_ptr + x);
                *(output_ptr + x) = (policy == ConvertPolicy::SATURATE) ? wrapper::add_sat(val1, val2) : val1 + val2;
            }
        },
        input1, input2, output);
    }
}
} // namespace cpu
} // namespace arm_compute
#endif // SRC_CORE_NEON_KERNELS_ADD_LIST_H