aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/convolution/depthwise/impl_fp16_fp16.hpp
blob: a00a1ef04ac3414b70446d1da129da6444d9674f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/*
 * Copyright (c) 2018-2019 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

/*
 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 *
 *          NOTE: Header to be included by implementation files only.
 *
 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include "arm.hpp"
#include "impl_base.hpp"

#pragma once

using namespace neon_convolution_kernels;

namespace depthwise
{

template <
  unsigned int OutputTileRows, unsigned int OutputTileCols,
  unsigned int KernelRows, unsigned int KernelCols,
  unsigned int StrideRows, unsigned int StrideCols
>
DepthwiseConvolution<
  OutputTileRows, OutputTileCols,
  KernelRows, KernelCols, StrideRows, StrideCols,
  float16_t, float16_t, float16_t
>::DepthwiseConvolution(
  int n_batches, int n_input_rows, int n_input_cols, int n_channels,
  ActivationFunction activation,
  unsigned int padding_top,
  unsigned int padding_left,
  unsigned int padding_bottom,
  unsigned int padding_right
) : Base(
      n_batches, n_input_rows, n_input_cols, n_channels, activation,
      padding_top, padding_left, padding_bottom, padding_right
    )
{
}

template <
  unsigned int OutputTileRows, unsigned int OutputTileCols,
  unsigned int KernelRows, unsigned int KernelCols,
  unsigned int StrideRows, unsigned int StrideCols
>
DepthwiseConvolution<
  OutputTileRows, OutputTileCols,
  KernelRows, KernelCols, StrideRows, StrideCols,
  float16_t, float16_t, float16_t
>::DepthwiseConvolution(
  int n_batches, int n_input_rows, int n_input_cols, int n_channels,
  int n_output_rows, int n_output_cols,
  ActivationFunction activation,
  unsigned int padding_top,
  unsigned int padding_left,
  unsigned int padding_bottom,
  unsigned int padding_right
) : Base(
      n_batches, n_input_rows, n_input_cols, n_channels,
      n_output_rows, n_output_cols, activation,
      padding_top, padding_left, padding_bottom, padding_right
    )
{
}

template <
  unsigned int OutputTileRows, unsigned int OutputTileCols,
  unsigned int KernelRows, unsigned int KernelCols,
  unsigned int StrideRows, unsigned int StrideCols
>
template <ActivationFunction Activation>
void DepthwiseConvolution<
  OutputTileRows, OutputTileCols,
  KernelRows, KernelCols, StrideRows, StrideCols,
  float16_t, float16_t, float16_t
>::execute_tile(
  int n_channels,
  const void *weights_biases_ptr,
  const float16_t *input,
  const unsigned int in_row_stride,
  const unsigned int in_col_stride,
  float16_t *output,
  const unsigned int out_row_stride,
  const unsigned int out_col_stride
)
{
  // Instantiate pointers
  const float16_t* __restrict__ inptr_base = input;
  float16_t* __restrict__ outptr_base = output;
  const float16_t* __restrict__ params = static_cast<const float16_t*>(weights_biases_ptr);

  // Perform the depthwise convolution
  int channels_remaining = n_channels;
  for (; channels_remaining >= 8; channels_remaining -= 8)
  {
    // Load input tile
    float16x8_t u[Base::inner_tile_rows][Base::inner_tile_cols];
    for (int i = 0; i < Base::inner_tile_rows; i++)
    {
      const float16_t* const inptr_row = inptr_base + i*in_row_stride;
      for (int j = 0; j < Base::inner_tile_cols; j++)
      {
        u[i][j] = vld1q_f16(inptr_row + j*in_col_stride);
      }
    }
    inptr_base += 8;

    // Load weights tile
    float16x8_t vbias = vld1q_f16(params);
    params += 8;

    float16x8_t w[KernelRows][KernelCols];
    for (unsigned int i = 0; i < KernelRows; i++)
    {
      for (unsigned int j = 0; j < KernelCols; j++)
      {
        w[i][j] = vld1q_f16(params);
        params += 8;
      }
    }

    // Perform the convolution
    float16x8_t v[OutputTileRows][OutputTileCols];
    for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
    {
      for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
      {
        v[out_i][out_j] = vbias;

        // Base co-ordinate
        const int base_i = out_i * StrideRows;
        const int base_j = out_j * StrideCols;

        // Fill the accumulator
        for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
        {
          const unsigned int i = base_i + in_i;
          for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
          {
            const unsigned int j = base_j + in_j;

            // v[out_i][out_j] += w[in_i][in_j] * u[i][j];
            v[out_i][out_j] = vaddq_f16(v[out_i][out_j], vmulq_f16(w[in_i][in_j], u[i][j]));
          }
        }

        // Apply the activation function
        if (Activation == ActivationFunction::ReLU ||
            Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = vmaxq_f16(v[out_i][out_j], vdupq_n_f16(0.0f));
        }
        if (Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = vminq_f16(v[out_i][out_j], vdupq_n_f16(6.0f));
        }
      }
    }

    // Store the output tile
    for (unsigned int i = 0; i < OutputTileRows; i++)
    {
      float16_t* const outptr_row = outptr_base + i*out_row_stride;
      for (unsigned int j = 0; j < OutputTileCols; j++)
      {
        vst1q_f16(outptr_row + j*out_col_stride, v[i][j]);
      }
    }
    outptr_base += 8;
  }
  for (; channels_remaining; channels_remaining--)
  {
    // Load input tile
    float16_t u[Base::inner_tile_rows][Base::inner_tile_cols];
    for (int i = 0; i < Base::inner_tile_rows; i++)
    {
      const float16_t* const inptr_row = inptr_base + i*in_row_stride;
      for (int j = 0; j < Base::inner_tile_cols; j++)
      {
        u[i][j] = *(inptr_row + j*in_col_stride);
      }
    }
    inptr_base++;

    // Load weights tile
    float16_t bias = *(params++);
    float16_t w[KernelRows][KernelCols];
    for (unsigned int i = 0; i < KernelRows; i++)
    {
      for (unsigned int j = 0; j < KernelCols; j++)
      {
        w[i][j] = *(params++);
      }
    }

    // Perform the convolution
    float16_t v[OutputTileRows][OutputTileCols];
    for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
    {
      for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
      {
        // Clear the accumulator
        v[out_i][out_j] = bias;

        // Base co-ordinate
        const int base_i = out_i * StrideRows;
        const int base_j = out_j * StrideCols;

        // Fill the accumulator
        for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
        {
          const unsigned int i = base_i + in_i;
          for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
          {
            const int j = base_j + in_j;
            v[out_i][out_j] += w[in_i][in_j] * u[i][j];
          }
        }

        // Apply the activation function
        if (Activation == ActivationFunction::ReLU ||
            Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = std::max<float16_t>(0.0f, v[out_i][out_j]);
        }
        if (Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = std::min<float16_t>(6.0f, v[out_i][out_j]);
        }
      }
    }

    // Store the output tile
    for (unsigned int i = 0; i < OutputTileRows; i++)
    {
      float16_t* const outptr_row = outptr_base + i*out_row_stride;
      for (unsigned int j = 0; j < OutputTileCols; j++)
      {
        *(outptr_row + j*out_col_stride) = v[i][j];
      }
    }
    outptr_base++;
  }
}

template <
  unsigned int OutputTileRows, unsigned int OutputTileCols,
  unsigned int KernelRows, unsigned int KernelCols,
  unsigned int StrideRows, unsigned int StrideCols
>
template <ActivationFunction Activation>
void DepthwiseConvolution<
  OutputTileRows, OutputTileCols,
  KernelRows, KernelCols, StrideRows, StrideCols,
  float16_t, float16_t, float16_t
>::execute_tile(
  int n_channels,
  const void *weights_biases_ptr,
  const float16_t * inptrs[Base::inner_tile_rows][Base::inner_tile_cols],
  float16_t *outptrs[Base::output_tile_rows][Base::output_tile_cols]
)
{
  // Instantiate pointers
  const float16_t* __restrict__ params = static_cast<const float16_t*>(weights_biases_ptr);
  int n = 0;

  // Perform the depthwise convolution
  int channels_remaining = n_channels;
  for (; channels_remaining >= 8; channels_remaining -= 8, n += 8)
  {
    // Load input tile
    float16x8_t u[Base::inner_tile_rows][Base::inner_tile_cols];
    for (int i = 0; i < Base::inner_tile_rows; i++)
    {
      for (int j = 0; j < Base::inner_tile_cols; j++)
      {
        u[i][j] = vld1q_f16(inptrs[i][j] + n);
      }
    }

    // Load weights tile
    float16x8_t vbias = vld1q_f16(params);
    params += 8;

    float16x8_t w[KernelRows][KernelCols];
    for (unsigned int i = 0; i < KernelRows; i++)
    {
      for (unsigned int j = 0; j < KernelCols; j++)
      {
        w[i][j] = vld1q_f16(params);
        params += 8;
      }
    }

    // Perform the convolution
    float16x8_t v[OutputTileRows][OutputTileCols];
    for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
    {
      for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
      {
        v[out_i][out_j] = vbias;

        // Base co-ordinate
        const int base_i = out_i * StrideRows;
        const int base_j = out_j * StrideCols;

        // Fill the accumulator
        for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
        {
          const unsigned int i = base_i + in_i;
          for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
          {
            const unsigned int j = base_j + in_j;

            // v[out_i][out_j] += w[in_i][in_j] * u[i][j];
            v[out_i][out_j] = vaddq_f16(v[out_i][out_j], vmulq_f16(w[in_i][in_j], u[i][j]));
          }
        }

        // Apply the activation function
        if (Activation == ActivationFunction::ReLU ||
            Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = vmaxq_f16(v[out_i][out_j], vdupq_n_f16(0.0f));
        }
        if (Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = vminq_f16(v[out_i][out_j], vdupq_n_f16(6.0f));
        }
      }
    }

    // Store the output tile
    for (unsigned int i = 0; i < OutputTileRows; i++)
    {
      for (unsigned int j = 0; j < OutputTileCols; j++)
      {
        vst1q_f16(outptrs[i][j] + n, v[i][j]);
      }
    }
  }
  for (; channels_remaining; channels_remaining--, n++)
  {
    // Load input tile
    float16_t u[Base::inner_tile_rows][Base::inner_tile_cols];
    for (int i = 0; i < Base::inner_tile_rows; i++)
    {
      for (int j = 0; j < Base::inner_tile_cols; j++)
      {
        u[i][j] = *(inptrs[i][j] + n);
      }
    }

    // Load weights tile
    float16_t bias = *(params++);
    float16_t w[KernelRows][KernelCols];
    for (unsigned int i = 0; i < KernelRows; i++)
    {
      for (unsigned int j = 0; j < KernelCols; j++)
      {
        w[i][j] = *(params++);
      }
    }

    // Perform the convolution
    float16_t v[OutputTileRows][OutputTileCols];
    for (unsigned int out_i = 0; out_i < OutputTileRows; out_i++)
    {
      for (unsigned int out_j = 0; out_j < OutputTileCols; out_j++)
      {
        // Clear the accumulator
        v[out_i][out_j] = bias;

        // Base co-ordinate
        const int base_i = out_i * StrideRows;
        const int base_j = out_j * StrideCols;

        // Fill the accumulator
        for (unsigned int in_i = 0; in_i < KernelRows; in_i++)
        {
          const unsigned int i = base_i + in_i;
          for (unsigned int in_j = 0; in_j < KernelCols; in_j++)
          {
            const int j = base_j + in_j;
            v[out_i][out_j] += w[in_i][in_j] * u[i][j];
          }
        }

        // Apply the activation function
        if (Activation == ActivationFunction::ReLU ||
            Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = std::max<float16_t>(0.0f, v[out_i][out_j]);
        }
        if (Activation == ActivationFunction::ReLU6)
        {
          v[out_i][out_j] = std::min<float16_t>(6.0f, v[out_i][out_j]);
        }
      }
    }

    // Store the output tile
    for (unsigned int i = 0; i < OutputTileRows; i++)
    {
      for (unsigned int j = 0; j < OutputTileCols; j++)
      {
        *(outptrs[i][j] + n) = v[i][j];
      }
    }
  }
}

}  // namespace depthwise
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC