aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
blob: dbada360529c5aa4a6d0fd1c0778b0c739c38b76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 * Copyright (c) 2017-2022, 2024 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#pragma once

#include <stdio.h>

#include "arm_gemm.hpp"
#include "bias_adder.hpp"
#include "mergeresults.hpp"
#include "transform.hpp"

#ifdef CYCLE_PROFILING
#include "profiler.hpp"
#endif

namespace arm_gemm {

namespace {

template<typename OutputStage>
class run_gemv_kernel {
public:
    template<typename strategy, typename Tlo, typename Tro, typename Tr>
    static void run (
        const strategy &strat,
        const Tlo *A_ptr, const Tro *B_ptr, Tr *c_ptr,
        size_t N, size_t K,
        const Tr *bias, const Activation &act, bool Accumulate,
        const OutputStage &os, const int32_t *col_bias, unsigned int col_base
    );
};

template<>
template<typename strategy, typename Tlo, typename Tro, typename Tr>
void run_gemv_kernel<Nothing>::run(
        const strategy &strat,
        const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
        size_t N, size_t K,
        const Tr *bias, const Activation &act, bool Accumulate,
        const Nothing &, const int32_t *, unsigned int
    ) {

    strat.kernel(A_ptr, B_ptr, C_ptr, N, K, bias, act, Accumulate);
}

template<>
template<typename strategy, typename Tlo, typename Tro, typename Tr>
void run_gemv_kernel<Requantize32>::run(
        const strategy &strat,
        const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
        size_t N, size_t K,
        const Tr *, const Activation &, bool,
        const Requantize32 &qp, const int32_t *col_bias, unsigned int col_base
    ) {

    strat.kernel(A_ptr, B_ptr, C_ptr, N, K, &qp, col_bias + col_base, col_base);
}

} // anonymous namespace

// Implementation of the GemmCommon abstract class.
//
// This is implementation is for GEMV with pretransposition.
//
// batches are not supported as a batched GEMV makes no sense (can be converted to a GEMM).
template<typename strategy, typename To, typename Tr, typename OutputStage=Nothing>
class GemvPretransposed : public GemmCommon<To, Tr> {
    typedef typename strategy::operand_type Toi;
    typedef typename strategy::result_type Tri;

    const GemmArgs     _args;

    const unsigned int _buffer_per_multi;

    unsigned int k_block=0;
    unsigned int n_block=0;

    const Toi *_B_pretransposed = nullptr;

    OutputStage _os;

    // Pointer to the column sums (for quantized cases)
    int32_t *col_bias = nullptr;

    // Get size of the column sums
    unsigned int get_col_sum_size() const {
        if(std::is_same<OutputStage, Requantize32>::value) {
            return _args._Nsize * _args._nmulti * sizeof(int32_t);
        } else {
            return 0;
        }
    }

public:
    GemvPretransposed(GemvPretransposed &) = delete;
    GemvPretransposed & operator= (GemvPretransposed &) = delete;

    GemvPretransposed(const GemmArgs &args, const OutputStage &os = {})
                      : _args(args),
                        _buffer_per_multi(roundup(args._Ksize, strategy::k_unroll()) * roundup(args._Nsize, strategy::out_width())),
                        _os(os) {
        /* For now don't do any blocking. TODO: figure out if we should. */
        if (strategy::supports_accumulate() && args._cfg && args._cfg->inner_block_size) {
            k_block = args._cfg->inner_block_size;
        } else {
            k_block = args._Ksize;
        }

        if (args._cfg && args._cfg->outer_block_size) {
            n_block = args._cfg->outer_block_size;
        } else {
            n_block = args._Nsize;
        }
    }

    // Window is number of out_width blocks, times number of multis.
    ndrange_t get_window_size() const override {
        return { iceildiv(_args._Nsize, strategy::out_width()) * _args._nmulti };
    }

    // Actually execute the GEMV.
    void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override {
#ifdef CYCLE_PROFILING
        profiler prof;
#endif
        strategy strat(_args._ci);

        const auto start = work_range.get_position(0);
        const auto end   = work_range.get_position_end(0);

        /* Break the window values down into multis of interest... */
        const unsigned int window_per_multi = iceildiv(_args._Nsize, strategy::out_width());
        const unsigned int multi_0    = start / window_per_multi;
        const unsigned int multi_end  = end   / window_per_multi;

        /* ... and figure out where we start and end in the first and last multi. */
        const unsigned int n_0   = (start - (multi_0 * window_per_multi)) * strategy::out_width();
        const unsigned int n_max = (end - (multi_end * window_per_multi)) * strategy::out_width();

        static_assert(std::is_same<Tr, Tri>::value, "GemvPretransposed: Result types must be the same.");

        for (unsigned int multi=multi_0; multi<=multi_end; multi++) {
            const unsigned int n_start = (multi==multi_0) ? n_0 : 0;
            const unsigned int n_end = (multi==multi_end) ? n_max : _args._Nsize;

            if (n_end <= n_start)
                continue;

            for (unsigned int k0=0; k0<_args._Ksize; k0+=k_block) {
                unsigned int kmax = std::min(k0 + k_block, _args._Ksize);

                for (unsigned int n=n_start; n<n_end; n+=n_block) {
                    unsigned int nmax = std::min(n + n_block, n_end);
#ifdef CYCLE_PROFILING
                    auto p = prof.ScopedProfiler(PROFILE_KERNEL, (kmax-k0) * (nmax-n));
#endif
                    run_gemv_kernel<OutputStage>::run(strat, this->_Aptr + (multi * this->_A_multi_stride) + k0,
                                 _B_pretransposed + (multi * _buffer_per_multi) + (n * roundup(_args._Ksize, strategy::k_unroll())) + (k0 * strategy::out_width()),
                                 this->_Cptr + (multi * this->_C_multi_stride) + n,
                                 (nmax - n), (kmax-k0),
                                 this->_bias ? this->_bias + (multi * this->_bias_multi_stride) + n : nullptr,
                                 _args._act, (k0 != 0) || _args._accumulate,
                                 _os, col_bias, n + (_args._Nsize * multi));
                }
            }
        }
    }

    /* Pretransposed interface implementation */
    bool B_is_pretransposed() const override {
        return true;
    }

    bool B_pretranspose_required() const override {
        /* Transpose is required if _B_pretransposed is still nullptr */
        return (_B_pretransposed == nullptr);
    }

    size_t get_B_pretransposed_array_size() const override {
        return _buffer_per_multi * _args._nmulti * sizeof(To) + get_col_sum_size();
    }

    void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
        // Column sums go on the front of the pretransposed buffer in requantized cases.
        // We could optimize here in case we don't actually need to sum the columns, but this code is only run on setup.
        if (std::is_same<OutputStage, Requantize32>::value) {
            col_bias = reinterpret_cast<int32_t *>(in_buffer);

            Requantize32 *qp_ptr = reinterpret_cast<Requantize32 *>(&_os);

            for (unsigned int i=0; i<_args._nmulti; i++) {
                compute_col_sums(*qp_ptr, _args._Nsize, _args._Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _args._Nsize), _args._Ksize, i, 0);
            }
        }
    }

    void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override {
        if (std::is_same<OutputStage, Requantize32>::value) {
            Requantize32 *qp = reinterpret_cast<Requantize32 *>(&_os);

            qp->bias = bias;
            qp->bias_multi_stride = bias_multi_stride;
        }
    }

    void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride, bool transposed) override {
        assert(!transposed);

        requantize_bias(buffer, B, ldb, B_multi_stride);

        // The actual transposed buffer goes after the column sums (if any)
        uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer);
        Toi *B_buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());

        strategy strat(_args._ci);

        for (unsigned int multi=0; multi<_args._nmulti; multi++) {
            strat.transforms.PrepareB(B_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _args._Nsize, 0, _args._Ksize, false);
        }

        _B_pretransposed = B_buffer;
    }

    void set_pretransposed_B_data(void *buffer) override {
        _B_pretransposed = reinterpret_cast<Toi *>(buffer);
    }

    GemmConfig get_config() override {
        GemmConfig c;

        c.method = GemmMethod::GEMV_PRETRANSPOSED;
        c.inner_block_size = k_block;
        c.outer_block_size = n_block;
        c.filter = get_type_name<strategy>();

        return c;
    }
};

} // namespace arm_gemm