aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_gemm/convolver.hpp
blob: 879d95f5bbed97e669f5c743e0f444e8923b7537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * Copyright (c) 2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#pragma once

#include "convolution_parameters.hpp"

#include <algorithm>
#include <cstddef>
#include <tuple>
#include <vector>

namespace arm_gemm {

// Class to assist with convolution calculations.
//
// This is framed as a hierarchy of objects:
//
//  - Top level object which depends only on convolution parameters.  This sets up std::vectors for the padding and
//    kernel offset arrays.  From this you can request:
//
//  - Mid level object (e.g. instantiated at start of 'ConvolutionInterleave').  This holds specifics about the
//    input tensor, and the desired column range.  Calculations specific to this can be done once when this is set
//    up.  From this you can request:
//
//  - Low level object (instantiated for each range of rows).  This contains methods to actually populate a row
//    pointer array.


template<typename T>
class convolver {
private:
    const ConvolutionParameters  m_params;

    // Vector of padding data
    const std::vector<T>         m_pad_row;

    // X/Y offsets for each kernel position
    std::vector<int>             m_kernel_y;
    std::vector<int>             m_kernel_x;

    class column_handler {
    private:
        const convolver<T>          &m_parent;

        // Base/stride of input image
        const T * const              m_input_base;
        const size_t                 m_input_stride;

        // Starting kernel point and channel offset within that point
        const unsigned int           m_start_pos;
        const unsigned int           m_start_offset;

        // Total length to process, rounded length of each input channel block.
        const unsigned int           m_length;
        const unsigned int           m_rounded_stringlen;

        class row_handler {
        private:
            const convolver<T>          &m_convolver;
            const column_handler        &m_parent;

            // These variables track progress through the current block of rows
            unsigned int                 m_start_output_y=0;
            unsigned int                 m_start_output_x=0;

            unsigned int                 m_length_remaining=0;
            unsigned int                 m_current_pos=0;

            unsigned int                 m_active_height=0;

        public:
            row_handler(const column_handler &parent, unsigned int start_row, unsigned int active_height) :
                m_convolver(parent.m_parent),
                m_parent(parent),
                m_start_output_y(start_row / m_convolver.m_params.output_width),
                m_start_output_x(start_row % m_convolver.m_params.output_width),
                m_length_remaining(m_parent.m_length),
                m_current_pos(m_parent.m_start_pos),
                m_active_height(active_height) { }

            bool finished() const {
                return (m_length_remaining == 0);
            }

            std::tuple<unsigned int, unsigned int> next_block(const T ** const row_ptr) {
                if (finished()) {
                    return std::make_tuple(0, 0);
                }

                // "in_width" in the amount of data that will be read in (copied)
                // "out_width" is the total amount of data that will be produced (including padding)
                unsigned int offset = (m_current_pos == m_parent.m_start_pos) ? m_parent.m_start_offset : 0;
                unsigned int in_width = std::min(m_length_remaining, static_cast<unsigned int>(m_convolver.m_params.input_channels) - offset);
                unsigned int out_width = std::min(m_length_remaining, m_parent.m_rounded_stringlen - offset);

                unsigned int output_y = m_start_output_y;
                unsigned int output_x = m_start_output_x;

                for (unsigned int row=0; row<m_active_height; row++) {
                    int input_y = (output_y * m_convolver.m_params.output_stride_h) + m_convolver.m_kernel_y[m_current_pos];
                    int input_x = (output_x * m_convolver.m_params.output_stride_w) + m_convolver.m_kernel_x[m_current_pos];

                    // Out-of-bounds points will read the padding data,
                    // otherwise find the correct address in the input image.
                    if (input_y < 0 || input_y >= m_convolver.m_params.input_height || input_x < 0 || input_x >= m_convolver.m_params.input_width) {
                        row_ptr[row] = m_convolver.m_pad_row.data();
                    } else {
                        row_ptr[row] = m_parent.m_input_base + ((input_y * m_convolver.m_params.input_width) + input_x) * m_parent.m_input_stride;
                    }

                    output_x++;
                    if (output_x == m_convolver.m_params.output_width) {
                        output_y++;
                        output_x=0;
                    }
                }

                m_current_pos++;
                m_length_remaining-=out_width;

                return std::make_tuple(in_width, offset);
            }
        }; // end of "row handler" class

    public:
        column_handler(const convolver<T> &parent, const T *input_base, size_t input_stride,
                       unsigned int k_start, unsigned int k_end, unsigned int rounded_stringlen)
                     : m_parent(parent), m_input_base(input_base), m_input_stride(input_stride),
                       m_start_pos(k_start / rounded_stringlen),
                       m_start_offset(k_start % rounded_stringlen),
                       m_length(k_end - k_start),
                       m_rounded_stringlen(rounded_stringlen) { }

        row_handler process_rows(unsigned int start_row, unsigned int active_height) const {
            return row_handler(*this, start_row, active_height);
        }
    }; // end of "column handler" class

public:
    convolver(ConvolutionParameters params) :
        m_params (params), m_pad_row(params.input_channels, static_cast<T>(params.padding_value)),
        m_kernel_y(params.kernel_width * params.kernel_height, 0),
        m_kernel_x(params.kernel_width * params.kernel_height, 0) {

        // Kernel points are addressed across, then down (assumed weight layout is WHIO)
        for (unsigned int ky=0; ky<params.kernel_height; ky++) {
            for (unsigned int kx=0; kx<params.kernel_width; kx++) {
                unsigned int n = (ky * params.kernel_width) + kx;
                m_kernel_y[n] = ky - params.padding_top;
                m_kernel_x[n] = kx - params.padding_left;
            }
        }
    }

    column_handler process_columns(const T *input_base, size_t input_stride,
                                   unsigned int k_start, unsigned int k_end, unsigned int rounded_stringlen) const {
        return column_handler(*this, input_base, input_stride, k_start, k_end, rounded_stringlen);
    }
};

} // namespace arm_gemm