aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NESelectKernel.cpp
blob: 86e8233e0f54edfb9008f547787001b8b8d41756 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
 * Copyright (c) 2018-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NESelectKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "utils/TypePrinter.h"

#include <arm_neon.h>
#include <map>
#include <string>

namespace arm_compute
{
namespace
{
template <typename ScalarType, typename VectorType>
void select_op(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
               const int window_step_x, const int window_start_x, const int window_end_x, const int limit, VectorType (*condition_conversion)(const uint8_t *))
{
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator condition(cond, win);
    Iterator input1(in1, win);
    Iterator input2(in2, win);
    Iterator output(out, win);

    execute_window_loop(win, [&](const Coordinates &)
    {
        auto       output_ptr    = reinterpret_cast<ScalarType *>(output.ptr());
        const auto condition_ptr = reinterpret_cast<const uint8_t *>(condition.ptr());
        const auto input1_ptr    = reinterpret_cast<const ScalarType *>(input1.ptr());
        const auto input2_ptr    = reinterpret_cast<const ScalarType *>(input2.ptr());

        int x = window_start_x;
        for(; x <= limit; x += window_step_x)
        {
            const auto c = (*condition_conversion)(condition_ptr + x);
            const auto a = wrapper::vloadq(input1_ptr + x);
            const auto b = wrapper::vloadq(input2_ptr + x);
            wrapper::vstore(output_ptr + x, wrapper::vbsl(c, a, b));
        }
        for(; x < window_end_x; ++x)
        {
            const auto c      = *(condition_ptr + x);
            const auto a      = *(input1_ptr + x);
            const auto b      = *(input2_ptr + x);
            *(output_ptr + x) = static_cast<bool>(c) ? a : b;
        }
    },
    condition, input1, input2, output);
}

template <typename ScalarType, typename VectorType>
void select_op_8(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    const auto window_step_x  = 16 / sizeof(ScalarType);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
    {
        static const auto zero = wrapper::vdup_n(static_cast<uint8_t>(0), arm_compute::wrapper::traits::vector_128_tag());
        return wrapper::vcgt(wrapper::vloadq(condition_ptr), zero);
    });
}

template <typename ScalarType, typename VectorType>
void select_op_16(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    const auto window_step_x  = 16 / sizeof(ScalarType);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
    {
        static const auto zero = wrapper::vdup_n(static_cast<uint16_t>(0), arm_compute::wrapper::traits::vector_128_tag());
        return wrapper::vcgt(wrapper::vmovl(wrapper::vload(condition_ptr)), zero);
    });
}

template <typename ScalarType, typename VectorType>
void select_op_32(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    const auto window_step_x  = 16 / sizeof(ScalarType);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    select_op<ScalarType, VectorType>(cond, in1, in2, out, window, window_step_x, window_start_x, window_end_x, window_end_x - window_step_x, [](const uint8_t *condition_ptr) -> VectorType
    {
        static const auto zero = wrapper::vdup_n(static_cast<uint32_t>(0), arm_compute::wrapper::traits::vector_128_tag());
        return wrapper::vcgt(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vload(condition_ptr)))), zero);
    });
}

template <typename ScalarType>
void select_op_not_same_rank(const ITensor *cond, const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    ARM_COMPUTE_UNUSED(window);

    auto       output_ptr    = reinterpret_cast<ScalarType *>(out->buffer());
    const auto condition_ptr = reinterpret_cast<const uint8_t *>(cond->buffer());
    const auto input1_ptr    = reinterpret_cast<const ScalarType *>(in1->buffer());
    const auto input2_ptr    = reinterpret_cast<const ScalarType *>(in2->buffer());

    const int outer_size = cond->info()->total_size() / cond->info()->element_size();
    const int inner_size = (in1->info()->total_size() / in1->info()->element_size()) / outer_size;
    int       offset     = 0;
    const int step       = 16 / in1->info()->element_size();

    for(int i = 0; i < outer_size; ++i)
    {
        int        x         = offset;
        const auto input_ptr = static_cast<bool>(*(condition_ptr + i)) ? input1_ptr : input2_ptr;
        for(; x <= offset + inner_size - step; x += step)
        {
            wrapper::vstore(output_ptr + x, wrapper::vloadq(input_ptr + x));
        }
        if(x <= offset + inner_size - (step / 2))
        {
            wrapper::vstore(output_ptr + x, wrapper::vload(input_ptr + x));
            x += step / 2;
        }
        for(; x < offset + inner_size; ++x)
        {
            *(output_ptr + x) = *(input_ptr + x);
        }
        offset += inner_size;
    }
}
} // namespace

NESelectKernel::NESelectKernel()
    : _function(nullptr), _c(nullptr), _x(nullptr), _y(nullptr), _output(nullptr), _has_same_rank(false)
{
}

void NESelectKernel::configure(const ITensor *c, const ITensor *x, const ITensor *y, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(c, x, y, output);

    // Auto initialize output if not initialized
    auto_init_if_empty(*output->info(), x->info()->tensor_shape(), 1, x->info()->data_type());
    ARM_COMPUTE_ERROR_THROW_ON(validate(c->info(), x->info(), y->info(), output->info()));

    _c             = c;
    _x             = x;
    _y             = y;
    _output        = output;
    _has_same_rank = (c->info()->tensor_shape().num_dimensions() == x->info()->tensor_shape().num_dimensions());

    std::string function_to_call("op_");
    function_to_call += string_from_data_type(x->info()->data_type());

    static std::map<std::string, SelectFunction *> map_function;

    if(_has_same_rank)
    {
        map_function =
        {
            { "op_S8", &select_op_8<int8_t, uint8x16_t> },
            { "op_S16", &select_op_16<int16_t, uint16x8_t> },
            { "op_S32", &select_op_32<int32_t, uint32x4_t> },
            { "op_U8", &select_op_8<uint8_t, uint8x16_t> },
            { "op_U16", &select_op_16<uint16_t, uint16x8_t> },
            { "op_U32", &select_op_32<uint32_t, uint32x4_t> },
            { "op_F32", &select_op_32<float, uint32x4_t> }
        };
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        map_function["op_F16"] = &select_op_16<float16_t, uint16x8_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    }
    else
    {
        map_function =
        {
            { "op_S8", &select_op_not_same_rank<int8_t> },
            { "op_S16", &select_op_not_same_rank<int16_t> },
            { "op_S32", &select_op_not_same_rank<int32_t> },
            { "op_U8", &select_op_not_same_rank<uint8_t> },
            { "op_U16", &select_op_not_same_rank<uint16_t> },
            { "op_U32", &select_op_not_same_rank<uint32_t> },
            { "op_F32", &select_op_not_same_rank<float> }
        };
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        map_function["op_F16"] = &select_op_not_same_rank<float16_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    }

    auto it = map_function.find(function_to_call);

    if(it != map_function.end())
    {
        _function = it->second;
    }

    Window win = calculate_max_window(x->info()->valid_region());
    INEKernel::configure(win);
}

Status NESelectKernel::validate(const ITensorInfo *c, const ITensorInfo *x, const ITensorInfo *y, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(c, x, y); 
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(x);
    ARM_COMPUTE_RETURN_ERROR_ON(x->data_type() == DataType::UNKNOWN);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(x, y);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(x, y);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(c, 1, DataType::U8);

    const bool is_same_rank = (c->tensor_shape().num_dimensions() == x->tensor_shape().num_dimensions());
    ARM_COMPUTE_RETURN_ERROR_ON(is_same_rank && (x->tensor_shape() != c->tensor_shape()));
    ARM_COMPUTE_RETURN_ERROR_ON(!is_same_rank && ((c->tensor_shape().num_dimensions() > 1) || (c->tensor_shape().x() != x->tensor_shape()[x->tensor_shape().num_dimensions() - 1])));

    if(output != nullptr && output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(x, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(x, output);
    }

    return Status{};
}

void NESelectKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_function == nullptr);
    _function(_c, _x, _y, _output, window);
}
} // namespace arm_compute