aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEQuantizationLayerKernel.cpp
blob: 113abad6b6d0f74fa2b80810d3c795c15f814e94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEQuantizationLayerKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include "arm_compute/core/CPP/Validate.h"

#include <arm_neon.h>
#include <map>

namespace arm_compute
{
namespace
{
constexpr auto window_step = 16;

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON(output->tensor_shape().total_size() == 0);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QASYMM16);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);

    return Status{};
}

template <typename T>
inline float32x4x4_t load_value(const T *input_ptr)
{
    using Tx16_t = typename wrapper::traits::neon_vector<T, 16>::type;
    return arm_compute::convert_to_float32x4x4<Tx16_t>(wrapper::vloadq(input_ptr));
}

template <>
inline float32x4x4_t load_value(const float *input_ptr)
{
    return { wrapper::vloadq(input_ptr),
             wrapper::vloadq(input_ptr + 4),
             wrapper::vloadq(input_ptr + 8),
             wrapper::vloadq(input_ptr + 12) };
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float32x4x4_t load_value(const float16_t *input_ptr)
{
    return { vcvt_f32_f16(wrapper::vload(input_ptr)),
             vcvt_f32_f16(wrapper::vload(input_ptr + 4)),
             vcvt_f32_f16(wrapper::vload(input_ptr + 8)),
             vcvt_f32_f16(wrapper::vload(input_ptr + 12)) };
}

#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

template <typename element_type>
using vector_type = wrapper::traits::neon_vector_t<element_type, window_step>;

template <typename quantized_type>
vector_type<quantized_type> vquantize_qasymm8(const float32x4x4_t &qv, const UniformQuantizationInfo &qi);

template <>
vector_type<uint8_t> vquantize_qasymm8<uint8_t>(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    return vquantize(qv, qi);
}

template <>
vector_type<int8_t> vquantize_qasymm8<int8_t>(const float32x4x4_t &qv, const UniformQuantizationInfo &qi)
{
    return vquantize_signed(qv, qi);
}

} // namespace

NEQuantizationLayerKernel::NEQuantizationLayerKernel()
    : _input(nullptr), _output(nullptr), _func(nullptr)
{
}

void NEQuantizationLayerKernel::configure(const ITensor *input, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info()));

    _input  = input;
    _output = output;

    static const std::map<std::string, QuantizationFunctionExecutorPtr> quant_map =
    {
        { "op_QASYMM8_QASYMM8", &NEQuantizationLayerKernel::run_quantize_qasymm8<uint8_t, uint8_t> },
        { "op_QASYMM8_QASYMM8_SIGNED", &NEQuantizationLayerKernel::run_quantize_qasymm8<uint8_t, int8_t> },
        { "op_QASYMM8_QASYMM16", &NEQuantizationLayerKernel::run_quantize_qasymm16<uint8_t> },

        { "op_QASYMM8_SIGNED_QASYMM8", &NEQuantizationLayerKernel::run_quantize_qasymm8<int8_t, uint8_t> },
        { "op_QASYMM8_SIGNED_QASYMM8_SIGNED", &NEQuantizationLayerKernel::run_quantize_qasymm8<int8_t, int8_t> },
        { "op_QASYMM8_SIGNED_QASYMM16", &NEQuantizationLayerKernel::run_quantize_qasymm16<int8_t> },

        { "op_F32_QASYMM8", &NEQuantizationLayerKernel::run_quantize_qasymm8<float, uint8_t> },
        { "op_F32_QASYMM8_SIGNED", &NEQuantizationLayerKernel::run_quantize_qasymm8<float, int8_t> },
        { "op_F32_QASYMM16", &NEQuantizationLayerKernel::run_quantize_qasymm16<float> },

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        { "op_F16_QASYMM8", &NEQuantizationLayerKernel::run_quantize_qasymm8<float16_t, uint8_t> },
        { "op_F16_QASYMM8_SIGNED", &NEQuantizationLayerKernel::run_quantize_qasymm8<float16_t, int8_t> },
        { "op_F16_QASYMM16", &NEQuantizationLayerKernel::run_quantize_qasymm16<float16_t> },
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC*/
    };

    std::string function_to_call("op_");
    function_to_call += string_from_data_type(_input->info()->data_type()) + "_";
    function_to_call += string_from_data_type(_output->info()->data_type());

    auto it = quant_map.find(function_to_call);

    if(it == quant_map.end())
    {
        ARM_COMPUTE_ERROR("Unsupported combination of input and output data types");
    }
    _func = it->second;

    // Configure kernel window
    Window win_config = calculate_max_window(*input->info(), Steps());

    Coordinates coord;
    coord.set_num_dimensions(output->info()->num_dimensions());
    output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));

    INEKernel::configure(win_config);
}

Status NEQuantizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output));
    return Status{};
}

template <typename TIn, typename TOut>
void NEQuantizationLayerKernel::run_quantize_qasymm8(const Window &window)
{
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    const UniformQuantizationInfo uqinfo_in = _input->info()->quantization_info().uniform();
    UniformQuantizationInfo       uqinfo    = _output->info()->quantization_info().uniform();
    if(is_data_type_quantized_asymmetric(_input->info()->data_type()))
    {
        uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo);
    }
#ifdef __aarch64__
    constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN;
#else  //__aarch64__
    constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO;
#endif //__aarch64__

    // Collapse window and reset first dimension to handle tail calculations manually
    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input(_input, win_collapsed);
    Iterator output(_output, win_collapsed);
    execute_window_loop(win_collapsed, [&](const Coordinates &)
    {
        auto input_ptr  = reinterpret_cast<const TIn *>(input.ptr());
        auto output_ptr = reinterpret_cast<TOut *>(output.ptr());

        int x = window_start_x;
        for(; x <= (window_end_x - window_step); x += window_step)
        {
            wrapper::vstore(&output_ptr[x], vquantize_qasymm8<TOut>(load_value(&input_ptr[x]), uqinfo));
        }
        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            output_ptr[x] = Qasymm8QuantizationHelper<TOut>::quantize(input_ptr[x], uqinfo, rounding_policy);
        }
    },
    input, output);
}

template <typename T>
void NEQuantizationLayerKernel::run_quantize_qasymm16(const Window &window)
{
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    const UniformQuantizationInfo uqinfo_in = _input->info()->quantization_info().uniform();
    UniformQuantizationInfo       uqinfo    = _output->info()->quantization_info().uniform();
    if(is_data_type_quantized_asymmetric(_input->info()->data_type()))
    {
        uqinfo = compute_requantization_scale_offset(uqinfo_in, uqinfo);
    }
#ifdef __aarch64__
    constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_NEAREST_EVEN;
#else  //__aarch64__
    constexpr RoundingPolicy rounding_policy = RoundingPolicy::TO_ZERO;
#endif //__aarch64__

    // Collapse window and reset first dimension to handle tail calculations manually
    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input(_input, win_collapsed);
    Iterator output(_output, win_collapsed);
    execute_window_loop(win_collapsed, [&](const Coordinates &)
    {
        auto input_ptr  = reinterpret_cast<const T *>(input.ptr());
        auto output_ptr = reinterpret_cast<uint16_t *>(output.ptr());

        int x = window_start_x;
        for(; x <= (window_end_x - window_step); x += window_step)
        {
            uint16x8x2_t tmp = vquantize_qasymm16(load_value(&input_ptr[x]), uqinfo);
            vst1q_u16(&output_ptr[x], tmp.val[0]);
            vst1q_u16(&output_ptr[x + 8], tmp.val[1]);
        }
        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            output_ptr[x] = quantize_qasymm16(input_ptr[x], uqinfo, rounding_policy);
        }
    },
    input, output);
}

void NEQuantizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (this->*_func)(window);
}
} // namespace arm_compute