aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
blob: 4b2352f4c2e15a1e405b84543e43347648efa0e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
/*
 * Copyright (c) 2016-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NESymm.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"

#include <arm_neon.h>

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include <arm_fp16.h> // needed for float16_t
#endif                /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

namespace arm_compute
{
namespace
{
const float       scale255_constant      = 1.f / 255.f;
const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
const float32x4_t positive_round_f32q    = vdupq_n_f32(0.5f);

inline Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
{
    ARM_COMPUTE_UNUSED(overflow_policy);
    ARM_COMPUTE_UNUSED(rounding_policy);

    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
                                                         DataType::S16, DataType::QSYMM16,
                                                         DataType::S32, DataType::F16, DataType::F32);
    if(is_data_type_quantized(input1->data_type()) || is_data_type_quantized(input2->data_type()))
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(overflow_policy == ConvertPolicy::WRAP, "ConvertPolicy cannot be WRAP if datatype is quantized");
    }

    if(output->total_size() > 0)
    {
        const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");

        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
                                        "Output can only be U8 if both inputs are U8");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8 && (input1->data_type() != DataType::QASYMM8 || input2->data_type() != DataType::QASYMM8),
                                        "Output can only be QASYMM8 if both inputs are QASYMM8");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QASYMM8_SIGNED && (input1->data_type() != DataType::QASYMM8_SIGNED || input2->data_type() != DataType::QASYMM8_SIGNED),
                                        "Output can only be QASYMM8 if both inputs are QASYMM8");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::QSYMM16 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
                                        "Output can only be QSYMM16 if both inputs are QSYMM16");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
                                        "Output can only be S32 if both inputs are QSYMM16");
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && scale != 1.f, "Unsupported scale for QSYMM16 inputs and S32 output");
    }

    if(std::abs(scale - scale255_constant) < 0.00001f)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
    }
    else
    {
        ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);

        int         exponent            = 0;
        const float normalized_mantissa = std::frexp(scale, &exponent);

        // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
        // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
        // Moreover, it will be negative as we deal with 1/2^n
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255");
    }

    return Status{};
}

/* Scales a given vector by 1/255.
 *
 * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
 *
 * @param in Input vector to scale.
 * @return   Scaled output rounded to nearest (round half up).
 */
inline int32x4_t scale255_S32_S32(int32x4_t in)
{
    // Scale
    const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
    // Round to nearest (round half up)
    // Add +0.5 for all values
    // Afterwards vcvt rounds toward zero
    return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
}

inline uint16x8_t scale255_U16_U16(uint16x8_t in)
{
    const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
    const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
    return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
}

template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8x16_t>::type
vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
{
    return vquantize_signed(val, info);
}

template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8x16_t>::type
vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
{
    return vquantize(val, info);
}

template <typename T>
inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
    int32_t tmp = static_cast<int32_t>(val / info.scale) + info.offset;

    T tmp_qua = static_cast<T>(tmp > SCHAR_MAX) ? SCHAR_MAX : ((tmp < SCHAR_MIN) ? SCHAR_MIN : tmp);
    return tmp_qua;
}

template <typename T>
inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
quantize(float val, const UniformQuantizationInfo &info)
{
    int32_t tmp = static_cast<int32_t>(val / info.scale) + info.offset;

    T tmp_qua = static_cast<T>((tmp > UCHAR_MAX) ? UCHAR_MAX : tmp);
    return tmp_qua;
}

template <typename T>
inline float dequantize(const T *input, const UniformQuantizationInfo &info)
{
    return static_cast<float>((*input) - info.offset) * info.scale;
}

template <typename T>
void mul_saturate_quantized_8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale)
{
    const UniformQuantizationInfo input1_qua_info = in1->info()->quantization_info().uniform();
    const UniformQuantizationInfo input2_qua_info = in2->info()->quantization_info().uniform();
    const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();

    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16 / sizeof(T);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<T *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const auto input1_q = wrapper::vloadq(input1_ptr + x);
            const auto input2_q = wrapper::vloadq(input2_ptr + x);

            // Dequantize inputs
            const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
            const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);

            const float32x4x4_t out_f32x4x4 =
            {
                vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
                vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
                vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
                vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
            };

            // Quantize output
            const auto result = vquantize<T>(out_f32x4x4, tmp_qua_info);
            wrapper::vstore(output_ptr + x, result);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            // Dequantize inputs
            float tmp_in1 = dequantize(input1_ptr + x, input1_qua_info);
            float tmp_in2 = dequantize(input2_ptr + x, input2_qua_info);
            float tmp_f   = tmp_in1 * tmp_in2;

            // Quantize output
            const auto tmp_qua = quantize<T>(tmp_f, tmp_qua_info);
            *(output_ptr + x)  = tmp_qua;
        }
    },
    input1, input2, output);
}

void mul_saturate_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale)
{
    const UniformQuantizationInfo input1_qua_info = in1->info()->quantization_info().uniform();
    const UniformQuantizationInfo input2_qua_info = in2->info()->quantization_info().uniform();
    const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();

    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<qsymm16_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const qsymm16x8x2_t input1_q =
            {
                {
                    vld1q_s16(input1_ptr + x),
                    vld1q_s16(input1_ptr + x + 8),
                }
            };
            const qsymm16x8x2_t input2_q =
            {
                {
                    vld1q_s16(input2_ptr + x),
                    vld1q_s16(input2_ptr + x + 8),
                }
            };

            // Dequantize inputs
            const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
            const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);

            const float32x4x4_t out_f32x4x4 =
            {
                vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
                vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
                vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
                vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
            };

            const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info);
            vst1q_s16(output_ptr + x, result.val[0]);
            vst1q_s16(output_ptr + x + 8, result.val[1]);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            // Dequantize inputs
            float tmp_in1 = static_cast<float>(*(input1_ptr + x)) * input1_qua_info.scale;
            float tmp_in2 = static_cast<float>(*(input2_ptr + x)) * input2_qua_info.scale;
            float tmp_f   = tmp_in1 * tmp_in2;

            // Quantize output, lrintf() has same rounding mode as vcombine_s16
            int32_t   tmp     = lrintf(tmp_f / tmp_qua_info.scale);
            qsymm16_t tmp_qua = static_cast<qsymm16_t>(tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
            *(output_ptr + x) = tmp_qua;
        }
    },
    input1, input2, output);
}

void mul_QSYMM16_QSYMM16_S32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int scale)
{
    ARM_COMPUTE_UNUSED(scale);

    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<int32_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const qsymm16x8x2_t input1_q =
            {
                {
                    vld1q_s16(input1_ptr + x),
                    vld1q_s16(input1_ptr + x + 8),
                }
            };
            const qsymm16x8x2_t input2_q =
            {
                {
                    vld1q_s16(input2_ptr + x),
                    vld1q_s16(input2_ptr + x + 8),
                }
            };

            const int32x4x4_t in1_s32 =
            {
                {
                    vmovl_s16(vget_low_s16(input1_q.val[0])),
                    vmovl_s16(vget_high_s16(input1_q.val[0])),
                    vmovl_s16(vget_low_s16(input1_q.val[1])),
                    vmovl_s16(vget_high_s16(input1_q.val[1])),
                }
            };
            const int32x4x4_t in2_s32 =
            {
                {
                    vmovl_s16(vget_low_s16(input2_q.val[0])),
                    vmovl_s16(vget_high_s16(input2_q.val[0])),
                    vmovl_s16(vget_low_s16(input2_q.val[1])),
                    vmovl_s16(vget_high_s16(input2_q.val[1])),
                }
            };

            const int32x4x4_t result =
            {
                {
                    vmulq_s32(in1_s32.val[0], in2_s32.val[0]),
                    vmulq_s32(in1_s32.val[1], in2_s32.val[1]),
                    vmulq_s32(in1_s32.val[2], in2_s32.val[2]),
                    vmulq_s32(in1_s32.val[3], in2_s32.val[3]),
                }
            };

            vst1q_s32(output_ptr + x, result.val[0]);
            vst1q_s32(output_ptr + x + 4, result.val[1]);
            vst1q_s32(output_ptr + x + 8, result.val[2]);
            vst1q_s32(output_ptr + x + 12, result.val[3]);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            int32_t tmp       = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
            *(output_ptr + x) = tmp;
        }
    },
    input1, input2, output);
}

template <bool is_scale255, bool is_sat>
void mul_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n)
{
    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16 / sizeof(uint8_t);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const uint8x16_t ta1 = wrapper::vloadq(input1_ptr + x);
            const uint8x16_t ta2 = wrapper::vloadq(input2_ptr + x);

            uint16x8_t       tmp1_high = vmovl_u8(vget_high_u8(ta1));
            const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
            uint16x8_t       tmp1_low  = vmovl_u8(vget_low_u8(ta1));
            const uint16x8_t tmp2_low  = vmovl_u8(vget_low_u8(ta2));

            tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
            tmp1_low  = vmulq_u16(tmp1_low, tmp2_low);

            if(is_scale255)
            {
                tmp1_high = scale255_U16_U16(tmp1_high);
                tmp1_low  = scale255_U16_U16(tmp1_low);
            }
            else
            {
                const int16x8_t vn = vdupq_n_s16(-n);

                if(is_sat)
                {
                    tmp1_high = vqshlq_u16(tmp1_high, vn);
                    tmp1_low  = vqshlq_u16(tmp1_low, vn);
                }
                else
                {
                    tmp1_high = vshlq_u16(tmp1_high, vn);
                    tmp1_low  = vshlq_u16(tmp1_low, vn);
                }
            }
            if(is_sat)
            {
                vst1q_u8(output_ptr, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
            }
            else
            {
                vst1q_u8(output_ptr, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
            }
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            uint16_t tmp = static_cast<uint16_t>(*(input1_ptr + x)) * static_cast<uint16_t>(*(input2_ptr + x));

            if(is_scale255)
            {
                float tmp_f = static_cast<float>(tmp) * scale255_constant;
                tmp         = static_cast<uint16_t>(tmp_f + 0.5f);
            }
            else
            {
                tmp >>= n;
            }
            if(is_sat && tmp > 255)
            {
                tmp = 255;
            }
            *(output_ptr + x) = static_cast<uint8_t>(tmp);
        }
    },
    input1, input2, output);
}

template <bool is_scale255, bool is_sat>
inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n)
{
    int32x4_t       tmp1_high = vmovl_s16(vget_high_s16(input1));
    const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2));
    int32x4_t       tmp1_low  = vmovl_s16(vget_low_s16(input1));
    const int32x4_t tmp2_low  = vmovl_s16(vget_low_s16(input2));

    tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
    tmp1_low  = vmulq_s32(tmp1_low, tmp2_low);

    if(is_scale255)
    {
        tmp1_high = scale255_S32_S32(tmp1_high);
        tmp1_low  = scale255_S32_S32(tmp1_low);
    }
    else
    {
        // Right shift amount
        const int32x4_t vn = vdupq_n_s32(-n);
        // Left shift amount
        const int32x4_t vnl = vdupq_n_s32(n);
        // Calculate conversion bit
        const uint32x4_t tmp1_high_u  = vreinterpretq_u32_s32(tmp1_high);
        const uint32x4_t tmp1_low_u   = vreinterpretq_u32_s32(tmp1_low);
        const uint32x4_t sign_high    = vshrq_n_u32(tmp1_high_u, 31);
        const uint32x4_t sign_low     = vshrq_n_u32(tmp1_low_u, 31);
        const int32x4_t  sign_high_s  = vreinterpretq_s32_u32(sign_high);
        const int32x4_t  sign_low_s   = vreinterpretq_s32_u32(sign_low);
        const int32x4_t  convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
        const int32x4_t  convert_low  = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
        if(is_sat)
        {
            tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
            tmp1_low  = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
        }
        else
        {
            tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
            tmp1_low  = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
        }
    }

    if(is_sat)
    {
        return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
    }
    else
    {
        return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
    }
}

template <bool is_scale255, bool is_sat>
inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n)
{
    const int16x8x2_t result =
    {
        {
            // First 8 elements
            mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[0], input2.val[0], n),
            // Second 8 elements
            mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[1], input2.val[1], n)
        }
    };

    return result;
}

template <bool is_scale255, bool is_sat>
void mul_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n)
{
    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const int16x8x2_t ta1 =
            {
                {
                    vld1q_s16(input1_ptr + x),
                    vld1q_s16(input1_ptr + x + 8),
                }
            };
            const int16x8x2_t ta2 =
            {
                {
                    vld1q_s16(input2_ptr + x),
                    vld1q_s16(input2_ptr + x + 8),
                }
            };
            const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);

            vst1q_s16(output_ptr + x, result.val[0]);
            vst1q_s16(output_ptr + x + 8, result.val[1]);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));

            if(is_scale255)
            {
                float tmp_f = static_cast<float>(tmp) * scale255_constant;

                tmp = static_cast<int32_t>(tmp_f + 0.5f);
            }
            else
            {
                if(tmp >= 0)
                {
                    tmp >>= n;
                }
                else
                {
                    uint32_t mask = (1u << n) - 1;
                    tmp           = (tmp + static_cast<int32_t>(mask)) >> n;
                }
            }
            if(is_sat)
            {
                tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
            }
            *(output_ptr + x) = static_cast<int16_t>(tmp);
        }
    },
    input1, input2, output);
}

void mul_F32_F32_F32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale)
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    constexpr int window_step_x         = 16 / sizeof(float);
    const auto    window_start_x        = static_cast<int>(window.x().start());
    const auto    window_end_x          = static_cast<int>(window.x().end());
    const bool    is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    using ExactTagType = typename wrapper::traits::neon_vector<float, window_step_x>::tag_type;

    if(is_broadcast_across_x)
    {
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const float *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<float *>(output.ptr());

            const float broadcast_value     = *reinterpret_cast<const float *>(broadcast_input.ptr());
            const auto  broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
            const auto  scale_vec           = wrapper::vdup_n(scale, ExactTagType{});

            // Compute window_step_x elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
                auto       res             = wrapper::vmul(wrapper::vmul(broadcast_value_vec, non_broadcast_v), scale_vec);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
                *(output_ptr + x)          = broadcast_value * non_broadcast_v * scale;
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const float *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const float *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<float *>(output.ptr());

            // Compute window_step_x elements per iteration
            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                const auto ta1       = wrapper::vloadq(input1_ptr + x);
                const auto ta2       = wrapper::vloadq(input2_ptr + x);
                const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{});
                const auto res       = wrapper::vmul(wrapper::vmul(ta1, ta2), scale_vec);
                wrapper::vstore(output_ptr + x, res);
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                const auto ta1    = *(input1_ptr + x);
                const auto ta2    = *(input2_ptr + x);
                *(output_ptr + x) = ta1 * ta2 * scale;
            }
        },
        input1, input2, output);
    }
}

void c_mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr)
{
    const auto input1 = static_cast<const float *__restrict>(input1_ptr);
    const auto input2 = static_cast<const float *__restrict>(input2_ptr);
    const auto output = static_cast<float *__restrict>(output_ptr);

    const float32x4_t a = wrapper::vloadq(input1);
    float32x4_t       b = wrapper::vloadq(input2);

    using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;

    const float32x4_t mask  = { -1.0f, 1.0f, -1.0f, 1.0f };
    const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
    const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
    const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
    const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});

    const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
    const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);

    float32x4_t res = wrapper::vmul(tmp0, b);

    b = wrapper::vrev64(b);
    b = wrapper::vmul(b, mask);

    res = wrapper::vmla(res, tmp1, b);
    wrapper::vstore(output, res);
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
void mul_F16_F16_F16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, float scale)
{
    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const float16_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const float16_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<float16_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const float16x8x2_t ta1 =
            {
                {
                    vld1q_f16(input1_ptr + x),
                    vld1q_f16(input1_ptr + x + 8),
                }
            };
            const float16x8x2_t ta2 =
            {
                {
                    vld1q_f16(input2_ptr + x),
                    vld1q_f16(input2_ptr + x + 8),
                }
            };
            const float16x8_t   scale_vec = vdupq_n_f16(scale);
            const float16x8x2_t result =
            {
                {
                    vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec),
                    vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec),
                }
            };
            vst1q_f16(output_ptr + x, result.val[0]);
            vst1q_f16(output_ptr + x + 8, result.val[1]);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            const auto ta1    = *(input1_ptr + x);
            const auto ta2    = *(input2_ptr + x);
            *(output_ptr + x) = ta1 * ta2 * scale;
        }
    },
    input1, input2, output);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

template <bool is_scale255, bool is_sat>
void mul_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n)
{
    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16 / sizeof(uint8_t);
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const uint8x16_t bv = wrapper::vloadq(input2_ptr + x);
            const uint8x16_t av = wrapper::vloadq(input1_ptr + x);

            uint16x8_t tmp_low  = vmovl_u8(vget_low_u8(av));
            uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
            tmp_low             = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
            tmp_high            = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));

            if(is_scale255)
            {
                tmp_low  = scale255_U16_U16(tmp_low);
                tmp_high = scale255_U16_U16(tmp_high);
            }
            else
            {
                const int16x8_t vn = vdupq_n_s16(-n);

                if(is_sat)
                {
                    tmp_low  = vqshlq_u16(tmp_low, vn);
                    tmp_high = vqshlq_u16(tmp_high, vn);
                }
                else
                {
                    tmp_low  = vshlq_u16(tmp_low, vn);
                    tmp_high = vshlq_u16(tmp_high, vn);
                }
            }

            if(is_sat)
            {
                static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);

                tmp_low  = vminq_u16(tmp_low, max);
                tmp_high = vminq_u16(tmp_high, max);
            }

            vst1q_s16(output_ptr + x, vreinterpretq_s16_u16(tmp_low));
            vst1q_s16(output_ptr + x + 8, vreinterpretq_s16_u16(tmp_high));
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));

            if(is_scale255)
            {
                float tmp_f = static_cast<float>(tmp) * scale255_constant;
                tmp         = static_cast<int32_t>(tmp_f + 0.5f);
            }
            else
            {
                tmp >>= n;
            }

            if(is_sat)
            {
                tmp = (tmp > SHRT_MAX) ? SHRT_MAX : tmp;
            }

            *(output_ptr + x) = static_cast<int16_t>(tmp);
        }
    },
    input1, input2, output);
}

template <bool is_scale255, bool is_sat>
void mul_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n)
{
    // Create input windows
    Window win        = window;
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
    input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input1(in1, input1_win);
    Iterator input2(in2, input2_win);
    Iterator output(out, win);

    const int  window_step_x  = 16;
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
        const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
        const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());

        // Compute window_step_x elements per iteration
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const int16x8x2_t ta1 =
            {
                {
                    vld1q_s16(input1_ptr + x),
                    vld1q_s16(input1_ptr + x + 8),
                }
            };
            const uint8x8x2_t ta2u =
            {
                {
                    vld1_u8(input2_ptr + x),
                    vld1_u8(input2_ptr + x + 8),
                }
            };
            const int16x8x2_t ta2 =
            {
                {
                    vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
                    vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
                }
            };

            const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);

            vst1q_s16(output_ptr + x, result.val[0]);
            vst1q_s16(output_ptr + x + 8, result.val[1]);
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));

            if(is_scale255)
            {
                float tmp_f = static_cast<float>(tmp) * scale255_constant;

                tmp = static_cast<int32_t>(tmp_f + 0.5f);
            }
            else
            {
                if(tmp >= 0)
                {
                    tmp >>= n;
                }
                else
                {
                    uint32_t mask = (1u << n) - 1;
                    tmp           = (tmp + static_cast<int32_t>(mask)) >> n;
                }
            }
            if(is_sat)
            {
                tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
            }
            *(output_ptr + x) = static_cast<int16_t>(tmp);
        }
    },
    input1, input2, output);
}

template <bool is_scale255, bool is_sat>
void mul_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, int n)
{
    // Simply swap the two input buffers
    mul_S16_U8_S16<is_scale255, is_sat>(in2, in1, out, window, n);
}
} // namespace

NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel()
    : _func_float(nullptr), _func_int(nullptr), _func_quantized(nullptr), _scale{ 0 }, _scale_exponent{ 0 }
{
}

void NEPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
{
    ARM_COMPUTE_UNUSED(rounding_policy);
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);

    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));

    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
    const TensorShape &out_shape    = broadcast_pair.first;
    const ValidRegion &valid_region = broadcast_pair.second;

    // Auto initialize output if not initialized
    set_shape_if_empty(*output, out_shape);

    _scale          = scale;
    _scale_exponent = 0;
    _func_quantized = nullptr;
    _func_int       = nullptr;
    _func_float     = nullptr;

    bool is_scale_255 = false;
    // Check and validate scaling factor
    if(std::abs(scale - scale255_constant) < 0.00001f)
    {
        is_scale_255 = true;
    }
    else
    {
        int exponent = 0;

        std::frexp(scale, &exponent);

        // Store the positive exponent. We know that we compute 1/2^n
        // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
        _scale_exponent = std::abs(exponent - 1);
    }

    const DataType dt_input1 = input1->data_type();
    const DataType dt_input2 = input2->data_type();
    const DataType dt_output = output->data_type();
    const bool     is_sat    = (overflow_policy == ConvertPolicy::SATURATE);

    switch(dt_input1)
    {
        case DataType::QASYMM8:
            if(dt_input2 == DataType::QASYMM8 && dt_output == DataType::QASYMM8)
            {
                _func_quantized = &mul_saturate_quantized_8<uint8_t>;
            }
            break;
        case DataType::QASYMM8_SIGNED:
            if(dt_input2 == DataType::QASYMM8_SIGNED)
            {
                _func_quantized = &mul_saturate_quantized_8<int8_t>;
                ;
            }
            break;
        case DataType::QSYMM16:
            if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::QSYMM16)
            {
                _func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16;
            }
            else if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::S32)
            {
                _func_int = &mul_QSYMM16_QSYMM16_S32;
            }
            break;
        case DataType::S16:
            if(DataType::U8 == dt_input2 && DataType::S16 == dt_output)
            {
                if(is_scale_255)
                {
                    _func_int = is_sat ? &mul_S16_U8_S16<true, true> : &mul_S16_U8_S16<true, false>;
                }
                else
                {
                    _func_int = is_sat ? &mul_S16_U8_S16<false, true> : &mul_S16_U8_S16<false, false>;
                }
            }
            if(DataType::S16 == dt_input2 && DataType::S16 == dt_output)
            {
                if(is_scale_255)
                {
                    _func_int = is_sat ? &mul_S16_S16_S16<true, true> : &mul_S16_S16_S16<true, false>;
                }
                else
                {
                    _func_int = is_sat ? &mul_S16_S16_S16<false, true> : &mul_S16_S16_S16<false, false>;
                }
            }
            break;
        case DataType::U8:
            if(DataType::U8 == dt_input2 && DataType::U8 == dt_output)
            {
                if(is_scale_255)
                {
                    _func_int = is_sat ? &mul_U8_U8_U8<true, true> : &mul_U8_U8_U8<true, false>;
                }
                else
                {
                    _func_int = is_sat ? &mul_U8_U8_U8<false, true> : &mul_U8_U8_U8<false, false>;
                }
            }
            else if(DataType::U8 == dt_input2 && DataType::S16 == dt_output)
            {
                if(is_scale_255)
                {
                    _func_int = is_sat ? &mul_U8_U8_S16<true, true> : &mul_U8_U8_S16<true, false>;
                }
                else
                {
                    _func_int = is_sat ? &mul_U8_U8_S16<false, true> : &mul_U8_U8_S16<false, false>;
                }
            }
            else if(DataType::S16 == dt_input2 && DataType::S16 == dt_output)
            {
                if(is_scale_255)
                {
                    _func_int = is_sat ? &mul_U8_S16_S16<true, true> : &mul_U8_S16_S16<true, false>;
                }
                else
                {
                    _func_int = is_sat ? &mul_U8_S16_S16<false, true> : &mul_U8_S16_S16<false, false>;
                }
            }
            break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            _func_float = &mul_F16_F16_F16;
            break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
        case DataType::F32:
            _func_float = &mul_F32_F32_F32;
            break;
        default:
            ARM_COMPUTE_ERROR("You called with the wrong img formats");
    }

    // Configure kernel window
    Coordinates coord;
    coord.set_num_dimensions(output->num_dimensions());
    output->set_valid_region(valid_region);
    Window win = calculate_max_window(valid_region, Steps());

    INEKernel::configure(win);
}

Status NEPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
                                                 RoundingPolicy rounding_policy)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));

    return Status{};
}

void NEPixelWiseMultiplicationKernel::run_op(const InputTensorMap &inputs, const OutputTensorMap &outputs, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    auto input1 = inputs.at(TensorType::ACL_SRC_0);
    auto input2 = inputs.at(TensorType::ACL_SRC_1);
    auto output = outputs.at(TensorType::ACL_DST);

    if(_func_quantized != nullptr)
    {
        (*_func_quantized)(input1, input2, output, window, _scale);
    }
    else if(_func_int != nullptr)
    {
        (*_func_int)(input1, input2, output, window, _scale_exponent);
    }
    else
    {
        ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
        (*_func_float)(input1, input2, output, window, _scale);
    }
}
namespace
{
constexpr unsigned int num_elems_processed_per_iteration_complex = 2;

Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);

    const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");

    // Validate in case of configured output
    if(output->total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
{
    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
    const TensorShape &out_shape    = broadcast_pair.first;
    const ValidRegion &valid_region = broadcast_pair.second;

    // Auto initialize output if not initialized
    const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
    auto_init_if_empty(*output, out_info);

    Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
    Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
    Window win_input2 = win.broadcast_if_dimension_le_one(*input2);

    AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
    AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);

    bool window_changed = update_window_and_padding(win_input1, input1_access)
                          || update_window_and_padding(win_input2, input2_access)
                          || update_window_and_padding(win, output_access);

    output_access.set_valid_region(win, valid_region);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

void NEComplexPixelWiseMultiplicationKernel::configure(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1, input2, output));

    // Configure kernel window
    auto win_config = validate_and_configure_window_complex(input1, input2, output);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);

    // Create kernel
    INEKernel::configure(win_config.second);
}

Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);

    return Status{};
}

void NEComplexPixelWiseMultiplicationKernel::run_op(const InputTensorMap &inputs, const OutputTensorMap &outputs, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    auto input1 = inputs.at(TensorType::ACL_SRC_0);
    auto input2 = inputs.at(TensorType::ACL_SRC_1);
    auto output = outputs.at(TensorType::ACL_DST);

    Iterator input1_it(input1, window.broadcast_if_dimension_le_one(input1->info()->tensor_shape()));
    Iterator input2_it(input2, window.broadcast_if_dimension_le_one(input2->info()->tensor_shape()));
    Iterator output_it(output, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        c_mul_F32_F32_F32_n(input1_it.ptr(), input2_it.ptr(), output_it.ptr());
    },
    input1_it, input2_it, output_it);
}
} // namespace arm_compute