aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEL2NormalizeLayerKernel.cpp
blob: 226d6e0c9ca488c96dbb98e44f810036755e11ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEL2NormalizeLayerKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>
#include <cmath>

namespace arm_compute
{
namespace
{
constexpr int max_input_tensor_dim = 3;

template <typename T, int S>
void l2_normalize_X(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window)
{
    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;

    const int  window_step_x  = 16 / data_size_from_type(in->info()->data_type());
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
    win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));

    Iterator input_it(in, win_collapsed);
    Iterator sum_it(sum, win_collapsed);
    Iterator output_it(out, win_collapsed);

    execute_window_loop(win_collapsed, [&](const Coordinates &)
    {
        const auto in_ptr  = reinterpret_cast<const T *>(input_it.ptr());
        const auto out_ptr = reinterpret_cast<T *>(output_it.ptr());

        const T    sum_value      = *reinterpret_cast<const T *>(sum_it.ptr());
        const T    norm_value     = static_cast<T>(1.f) / std::sqrt(std::max(sum_value, static_cast<T>(epsilon)));
        const auto vec_norm_value = wrapper::vdup_n(norm_value, ExactTagType{});

        // Compute elements over vector steps
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            wrapper::vstore(out_ptr + x, wrapper::vmul(wrapper::vloadq(in_ptr + x), vec_norm_value));
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            out_ptr[x] = in_ptr[x] * norm_value;
        }
    },
    input_it, sum_it, output_it);
}

template <typename T, int S>
void l2_normalize_YZ(const ITensor *in, const ITensor *sum, ITensor *out, float epsilon, const Window &window, size_t axis)
{
    using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;

    const int  window_step_x  = 16 / data_size_from_type(in->info()->data_type());
    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());

    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    Window window_sum(win);
    window_sum.set(axis, Window::Dimension(0, 0, 0));

    Iterator input_it(in, win);
    Iterator sum_it(sum, window_sum);
    Iterator output_it(out, win);

    const auto vec_eps = wrapper::vdup_n(static_cast<T>(epsilon), ExactTagType{});

    execute_window_loop(win, [&](const Coordinates &)
    {
        const auto in_ptr  = reinterpret_cast<const T *>(input_it.ptr());
        const auto sum_ptr = reinterpret_cast<const T *>(sum_it.ptr());
        const auto out_ptr = reinterpret_cast<T *>(output_it.ptr());

        // Compute elements over vector steps
        int x = window_start_x;
        for(; x <= (window_end_x - window_step_x); x += window_step_x)
        {
            const auto vec_norm_value = wrapper::vinvsqrt(wrapper::vmax(wrapper::vloadq(sum_ptr + x), vec_eps));
            wrapper::vstore(out_ptr + x, wrapper::vmul(wrapper::vloadq(in_ptr + x), vec_norm_value));
        }

        // Compute left-over elements
        for(; x < window_end_x; ++x)
        {
            const T norm_value = static_cast<T>(1.f) / std::sqrt(std::max(sum_ptr[x], static_cast<T>(epsilon)));
            out_ptr[x]         = in_ptr[x] * norm_value;
        }
    },
    input_it, sum_it, output_it);
}

Status validate_arguments(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, int axis, float epsilon)
{
    ARM_COMPUTE_UNUSED(epsilon);

    const uint32_t actual_axis = wrap_around(axis, max_input_tensor_dim);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, sum, output);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(actual_axis > 2, "Actual axis greater than 2 is not supported");
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(actual_axis >= TensorShape::num_max_dimensions, "Actual normalization axis greater than max number of dimensions");

    // Reduce shape on axis
    TensorShape sum_shape = input->tensor_shape();
    sum_shape.set(actual_axis, 1);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(sum->tensor_shape(), sum_shape);

    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(input->tensor_shape(), output->tensor_shape());
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
    }

    return Status{};
}

std::tuple<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output)
{
    Window win = calculate_max_window(*input, Steps());

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type());

    // NEL2NormalizeLayerKernel doesn't need padding so update_window_and_padding() can be skipped
    Coordinates coord;
    coord.set_num_dimensions(output->num_dimensions());
    output->set_valid_region(ValidRegion(coord, output->tensor_shape()));

    return std::make_tuple(Status{}, win);
}
} // namespace

NEL2NormalizeLayerKernel::NEL2NormalizeLayerKernel()
    : _input(nullptr), _sum(nullptr), _output(nullptr), _actual_axis(0), _epsilon(1e-12)
{
}

void NEL2NormalizeLayerKernel::configure(const ITensor *input, const ITensor *sum, ITensor *output, int axis, float epsilon)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), sum->info(), output->info(), axis, epsilon));

    _input       = input;
    _sum         = sum;
    _output      = output;
    _actual_axis = wrap_around(axis, max_input_tensor_dim);
    _epsilon     = epsilon;

    // Configure kernel window
    auto win_config = validate_and_configure_window(_input->info(), _output->info());
    ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));

    INEKernel::configure(std::get<1>(win_config));
}

Status NEL2NormalizeLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output, int axis, float epsilon)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, sum, output, axis, epsilon));
    ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(input->clone().get(), output->clone().get())));

    return Status{};
}

void NEL2NormalizeLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    if(_actual_axis > 2)
    {
        ARM_COMPUTE_ERROR("Unsupported normalization axis");
    }

    switch(_input->info()->data_type())
    {
        case DataType::F32:
            (_actual_axis == Window::DimX) ? l2_normalize_X<float, 4>(_input, _sum, _output, _epsilon, window) : l2_normalize_YZ<float, 4>(_input, _sum, _output, _epsilon, window, _actual_axis);
            break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        case DataType::F16:
            (_actual_axis == Window::DimX) ? l2_normalize_X<float16_t, 8>(_input, _sum, _output, _epsilon, window) : l2_normalize_YZ<float16_t, 8>(_input, _sum, _output, _epsilon, window, _actual_axis);
            break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
        default:
            ARM_COMPUTE_ERROR("Not implemented");
    }
}
} // namespace arm_compute