aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.cpp
blob: e3508a12345ed9ad08c45b0b0cee682099e8c3e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
/*
 * Copyright (c) 2017-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEGEMMMatrixMultiplyKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/helpers/float_ops.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"

#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <tuple>

using namespace arm_compute;

namespace arm_compute
{
class Coordinates;
} // namespace arm_compute

namespace
{
template <bool multiply_alpha>
void vector_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    const auto width_matrix_b  = static_cast<int>(output->info()->dimension(0));
    const auto in_b_stride     = static_cast<int>(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type()));
    const auto num_elems_vec_a = static_cast<int>(input0->info()->dimension(0));

    // The implementation computes 32 elements per iteration
    const int window_start_x = 32 * info.thread_id;
    const int window_step_x  = 32 * info.num_threads;
    const int window_end_x   = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
    ARM_COMPUTE_ERROR_ON_MSG((window_end_x - window_start_x) % window_step_x, " (window_end_x - window_start_x) must be multiple of window_step_x");

    Window win_out(window);
    win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
    win_out.set(Window::DimY, Window::Dimension(0, 1, 1));

    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(0, 0, 0));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if(input1->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
    win_b.set(Window::DimY, Window::Dimension(0, 1, 1));

    Iterator ina(input0, win_a);
    Iterator inb(input1, win_b);
    Iterator out(output, win_out);

    const float16x8_t alpha_f16 = vdupq_n_f16(alpha);
    ARM_COMPUTE_UNUSED(alpha_f16);

    execute_window_loop(win_out, [&](const Coordinates & id)
    {
        if(id.x() > width_matrix_b)
        {
            return;
        }

        float16x8_t acc0 = vdupq_n_f16(0.f);
        float16x8_t acc1 = vdupq_n_f16(0.f);
        float16x8_t acc2 = vdupq_n_f16(0.f);
        float16x8_t acc3 = vdupq_n_f16(0.f);

        auto vec_a    = reinterpret_cast<const float16_t *>(ina.ptr());
        auto matrix_b = reinterpret_cast<const float16_t *>(inb.ptr());

        const float16_t *vec_a_end_addr = vec_a + num_elems_vec_a;
        for(; vec_a <= (vec_a_end_addr - 4);)
        {
            const float16x4_t a0l = vld1_f16(vec_a);

            float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
            float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
            float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
            float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
            float16x8_t b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
            float16x8_t b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
            float16x8_t b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
            float16x8_t b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);

            acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 0));
            acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 0));
            acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 0));
            acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 0));
            acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 1));
            acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 1));
            acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 1));
            acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 1));

            matrix_b += 2 * in_b_stride;

            b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
            b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
            b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
            b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);
            b10 = vld1q_f16(matrix_b + 0 + 1 * in_b_stride);
            b11 = vld1q_f16(matrix_b + 8 + 1 * in_b_stride);
            b12 = vld1q_f16(matrix_b + 16 + 1 * in_b_stride);
            b13 = vld1q_f16(matrix_b + 24 + 1 * in_b_stride);

            acc0 = vaddq_f16(acc0, vmulq_lane_f16(b00, a0l, 2));
            acc1 = vaddq_f16(acc1, vmulq_lane_f16(b01, a0l, 2));
            acc2 = vaddq_f16(acc2, vmulq_lane_f16(b02, a0l, 2));
            acc3 = vaddq_f16(acc3, vmulq_lane_f16(b03, a0l, 2));
            acc0 = vaddq_f16(acc0, vmulq_lane_f16(b10, a0l, 3));
            acc1 = vaddq_f16(acc1, vmulq_lane_f16(b11, a0l, 3));
            acc2 = vaddq_f16(acc2, vmulq_lane_f16(b12, a0l, 3));
            acc3 = vaddq_f16(acc3, vmulq_lane_f16(b13, a0l, 3));

            vec_a += 4;
            matrix_b += 2 * in_b_stride;
        }

        for(; vec_a < vec_a_end_addr;)
        {
            const float16_t   a0  = *vec_a;
            const float16x8_t b00 = vld1q_f16(matrix_b + 0 + 0 * in_b_stride);
            const float16x8_t b01 = vld1q_f16(matrix_b + 8 + 0 * in_b_stride);
            const float16x8_t b02 = vld1q_f16(matrix_b + 16 + 0 * in_b_stride);
            const float16x8_t b03 = vld1q_f16(matrix_b + 24 + 0 * in_b_stride);

            acc0 = vaddq_f16(acc0, vmulq_n_f16(b00, a0));
            acc1 = vaddq_f16(acc1, vmulq_n_f16(b01, a0));
            acc2 = vaddq_f16(acc2, vmulq_n_f16(b02, a0));
            acc3 = vaddq_f16(acc3, vmulq_n_f16(b03, a0));

            vec_a += 1;
            matrix_b += in_b_stride;
        }

        // Multiply by the weight of matrix product (alpha)
        if(multiply_alpha)
        {
            acc0 = vmulq_f16(acc0, alpha_f16);
            acc1 = vmulq_f16(acc1, alpha_f16);
            acc2 = vmulq_f16(acc2, alpha_f16);
            acc3 = vmulq_f16(acc3, alpha_f16);
        }

        const auto vec_out = reinterpret_cast<float16_t *>(out.ptr());

        vst1q_f16(vec_out + 0, acc0);
        vst1q_f16(vec_out + 8, acc1);
        vst1q_f16(vec_out + 16, acc2);
        vst1q_f16(vec_out + 24, acc3);

    },
    ina, inb, out);
#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    ARM_COMPUTE_UNUSED(input0);
    ARM_COMPUTE_UNUSED(input1);
    ARM_COMPUTE_UNUSED(output);
    ARM_COMPUTE_UNUSED(window);
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_UNUSED(alpha);
    ARM_COMPUTE_ERROR("Not implemented");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}

template <bool multiply_alpha>
void vector_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, const ThreadInfo &info, float alpha)
{
    const auto width_matrix_b  = static_cast<int>(output->info()->dimension(0));
    const auto in_b_stride     = static_cast<int>(input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type()));
    const auto num_elems_vec_a = static_cast<int>(input0->info()->dimension(0));

    // The implementation computes 16 elements per iteration
    const int window_start_x = 16 * info.thread_id;
    const int window_step_x  = 16 * info.num_threads;
    // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
    const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;

    Window win_out(window);
    win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
    win_out.set(Window::DimY, Window::Dimension(0, 1, 1));

    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(0, 0, 0));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if(input1->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
    win_b.set(Window::DimY, Window::Dimension(0, 1, 1));

    Iterator ina(input0, win_a);
    Iterator inb(input1, win_b);
    Iterator out(output, win_out);

    execute_window_loop(win_out, [&](const Coordinates & id)
    {
        if(id.x() > width_matrix_b)
        {
            return;
        }

        float32x4_t acc0 = vdupq_n_f32(0.f);
        float32x4_t acc1 = vdupq_n_f32(0.f);
        float32x4_t acc2 = vdupq_n_f32(0.f);
        float32x4_t acc3 = vdupq_n_f32(0.f);

        auto vec_a    = reinterpret_cast<const float *>(ina.ptr());
        auto matrix_b = reinterpret_cast<const float *>(inb.ptr());

#if __arm__
        asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
        asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b)));
        asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + in_b_stride)));
#endif /* __arm__ */

        auto vec_a_end_addr = vec_a + num_elems_vec_a;
        for(; vec_a <= (vec_a_end_addr - 4);)
        {
            float32x2_t a0l = vld1_f32(vec_a);

            float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
            float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
            float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
            float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);

            float32x4_t b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
            float32x4_t b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
            float32x4_t b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
            float32x4_t b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);

#if __arm__
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(vec_a)));
            asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 1 * in_b_stride)));
            asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 2 * in_b_stride)));
            asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 3 * in_b_stride)));
            asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(matrix_b + 4 * in_b_stride)));
#endif /* __arm__ */

            acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
            acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
            acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
            acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);

            acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
            acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
            acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
            acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);

            vec_a += 2;
            matrix_b += 2 * in_b_stride;

            a0l = vld1_f32(vec_a);

            b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
            b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
            b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
            b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);

            b10 = vld1q_f32(matrix_b + 0 + 1 * in_b_stride);
            b11 = vld1q_f32(matrix_b + 4 + 1 * in_b_stride);
            b12 = vld1q_f32(matrix_b + 8 + 1 * in_b_stride);
            b13 = vld1q_f32(matrix_b + 12 + 1 * in_b_stride);

            acc0 = vmlaq_lane_f32(acc0, b00, a0l, 0);
            acc1 = vmlaq_lane_f32(acc1, b01, a0l, 0);
            acc2 = vmlaq_lane_f32(acc2, b02, a0l, 0);
            acc3 = vmlaq_lane_f32(acc3, b03, a0l, 0);

            acc0 = vmlaq_lane_f32(acc0, b10, a0l, 1);
            acc1 = vmlaq_lane_f32(acc1, b11, a0l, 1);
            acc2 = vmlaq_lane_f32(acc2, b12, a0l, 1);
            acc3 = vmlaq_lane_f32(acc3, b13, a0l, 1);

            vec_a += 2;
            matrix_b += 2 * in_b_stride;
        }

        for(; vec_a < vec_a_end_addr;)
        {
            const float a0 = *vec_a;

            const float32x4_t b00 = vld1q_f32(matrix_b + 0 + 0 * in_b_stride);
            const float32x4_t b01 = vld1q_f32(matrix_b + 4 + 0 * in_b_stride);
            const float32x4_t b02 = vld1q_f32(matrix_b + 8 + 0 * in_b_stride);
            const float32x4_t b03 = vld1q_f32(matrix_b + 12 + 0 * in_b_stride);

            acc0 = vmlaq_n_f32(acc0, b00, a0);
            acc1 = vmlaq_n_f32(acc1, b01, a0);
            acc2 = vmlaq_n_f32(acc2, b02, a0);
            acc3 = vmlaq_n_f32(acc3, b03, a0);

            vec_a += 1;
            matrix_b += in_b_stride;
        }

        // Multiply by the weight of matrix product (alpha)
        if(multiply_alpha)
        {
            const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
            acc0                        = vmulq_f32(acc0, alpha_f32);
            acc1                        = vmulq_f32(acc1, alpha_f32);
            acc2                        = vmulq_f32(acc2, alpha_f32);
            acc3                        = vmulq_f32(acc3, alpha_f32);
        }

        const auto vec_out = reinterpret_cast<float *>(out.ptr());

        vst1q_f32(vec_out + 0, acc0);
        vst1q_f32(vec_out + 4, acc1);
        vst1q_f32(vec_out + 8, acc2);
        vst1q_f32(vec_out + 12, acc3);
    },
    ina, inb, out);
}

template <bool multiply_alpha>
void matrix_matrix_multiply_f32(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha)
{
    const size_t in_b_stride          = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type());
    const size_t out_stride1          = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type());
    const size_t out_stride2          = out_stride1 * 2;
    const size_t out_stride3          = out_stride1 * 3;
    const int    num_elems_matrix_b_x = input1->info()->dimension(0);

    // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if(input1->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    // Set step_x and step_y for matrix B. Scale by a factor of 4 the X range as the input transposed matrix A has 4 times less the cols of the output matrix
    // The step along the x direction is 2 times the in_b_stride because for each iteration we compute 2 blocks of size 4x4
    win_b.set(Window::DimX, Window::Dimension(window.x().start() / 4, window.x().end() / 4, 2 * in_b_stride));
    win_b.set(Window::DimY, Window::Dimension(0, 0, 0));

    Iterator ina(input0, win_a);
    Iterator inb(input1, win_b);
    Iterator out(output, window);

    // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW
    // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
    // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
    execute_window_loop(window, [&](const Coordinates &)
    {
        auto mtx_a0 = reinterpret_cast<const float *>(ina.ptr());
        auto mtx_b0 = reinterpret_cast<const float *>(inb.ptr());
        auto mtx_b1 = mtx_b0 + in_b_stride;

        float32x4_t acc00 = vdupq_n_f32(0.f);
        float32x4_t acc10 = vdupq_n_f32(0.f);
        float32x4_t acc20 = vdupq_n_f32(0.f);
        float32x4_t acc30 = vdupq_n_f32(0.f);

        float32x4_t acc01 = vdupq_n_f32(0.f);
        float32x4_t acc11 = vdupq_n_f32(0.f);
        float32x4_t acc21 = vdupq_n_f32(0.f);
        float32x4_t acc31 = vdupq_n_f32(0.f);

#if __arm__
        asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
        asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
        asm volatile("PLD [%0, #128*1]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */

        auto mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;
        for(; mtx_b0 <= (mtx_b0_end_addr - 32);)
        {
            float32x4_t a0 = vld1q_dup_f32(mtx_a0 + 0);
            float32x4_t a1 = vld1q_dup_f32(mtx_a0 + 1);
            float32x4_t a2 = vld1q_dup_f32(mtx_a0 + 2);
            float32x4_t a3 = vld1q_dup_f32(mtx_a0 + 3);

            float32x4_t b00 = vld1q_f32(mtx_b0);
            float32x4_t b10 = vld1q_f32(mtx_b1);
            float32x4_t b01 = vld1q_f32(mtx_b0 + 4);
            float32x4_t b11 = vld1q_f32(mtx_b1 + 4);

#if __arm__
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b00, a0);
            acc10 = vmlaq_f32(acc10, b00, a1);
            acc20 = vmlaq_f32(acc20, b00, a2);
            acc30 = vmlaq_f32(acc30, b00, a3);

            float32x4_t a4 = vld1q_dup_f32(mtx_a0 + 4);
            float32x4_t a5 = vld1q_dup_f32(mtx_a0 + 5);
            float32x4_t a6 = vld1q_dup_f32(mtx_a0 + 6);
            float32x4_t a7 = vld1q_dup_f32(mtx_a0 + 7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b10, a0);
            acc11 = vmlaq_f32(acc11, b10, a1);
            acc21 = vmlaq_f32(acc21, b10, a2);
            acc31 = vmlaq_f32(acc31, b10, a3);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b01, a4);
            acc10 = vmlaq_f32(acc10, b01, a5);
            acc20 = vmlaq_f32(acc20, b01, a6);
            acc30 = vmlaq_f32(acc30, b01, a7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b11, a4);
            acc11 = vmlaq_f32(acc11, b11, a5);
            acc21 = vmlaq_f32(acc21, b11, a6);
            acc31 = vmlaq_f32(acc31, b11, a7);

            mtx_a0 += 8;
            mtx_b0 += 8;
            mtx_b1 += 8;

            a0 = vld1q_dup_f32(mtx_a0 + 0);
            a1 = vld1q_dup_f32(mtx_a0 + 1);
            a2 = vld1q_dup_f32(mtx_a0 + 2);
            a3 = vld1q_dup_f32(mtx_a0 + 3);

            b00 = vld1q_f32(mtx_b0);
            b10 = vld1q_f32(mtx_b1);
            b01 = vld1q_f32(mtx_b0 + 4);
            b11 = vld1q_f32(mtx_b1 + 4);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b00, a0);
            acc10 = vmlaq_f32(acc10, b00, a1);
            acc20 = vmlaq_f32(acc20, b00, a2);
            acc30 = vmlaq_f32(acc30, b00, a3);

            a4 = vld1q_dup_f32(mtx_a0 + 4);
            a5 = vld1q_dup_f32(mtx_a0 + 5);
            a6 = vld1q_dup_f32(mtx_a0 + 6);
            a7 = vld1q_dup_f32(mtx_a0 + 7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b10, a0);
            acc11 = vmlaq_f32(acc11, b10, a1);
            acc21 = vmlaq_f32(acc21, b10, a2);
            acc31 = vmlaq_f32(acc31, b10, a3);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b01, a4);
            acc10 = vmlaq_f32(acc10, b01, a5);
            acc20 = vmlaq_f32(acc20, b01, a6);
            acc30 = vmlaq_f32(acc30, b01, a7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b11, a4);
            acc11 = vmlaq_f32(acc11, b11, a5);
            acc21 = vmlaq_f32(acc21, b11, a6);
            acc31 = vmlaq_f32(acc31, b11, a7);

            mtx_a0 += 8;
            mtx_b0 += 8;
            mtx_b1 += 8;

            a0  = vld1q_dup_f32(mtx_a0 + 0);
            a1  = vld1q_dup_f32(mtx_a0 + 1);
            a2  = vld1q_dup_f32(mtx_a0 + 2);
            a3  = vld1q_dup_f32(mtx_a0 + 3);
            b00 = vld1q_f32(mtx_b0);
            b10 = vld1q_f32(mtx_b1);
            b01 = vld1q_f32(mtx_b0 + 4);
            b11 = vld1q_f32(mtx_b1 + 4);

#if __arm__
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
            asm volatile("PLD [%0, #128*4]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b00, a0);
            acc10 = vmlaq_f32(acc10, b00, a1);
            acc20 = vmlaq_f32(acc20, b00, a2);
            acc30 = vmlaq_f32(acc30, b00, a3);

            a4 = vld1q_dup_f32(mtx_a0 + 4);
            a5 = vld1q_dup_f32(mtx_a0 + 5);
            a6 = vld1q_dup_f32(mtx_a0 + 6);
            a7 = vld1q_dup_f32(mtx_a0 + 7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b10, a0);
            acc11 = vmlaq_f32(acc11, b10, a1);
            acc21 = vmlaq_f32(acc21, b10, a2);
            acc31 = vmlaq_f32(acc31, b10, a3);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b01, a4);
            acc10 = vmlaq_f32(acc10, b01, a5);
            acc20 = vmlaq_f32(acc20, b01, a6);
            acc30 = vmlaq_f32(acc30, b01, a7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b11, a4);
            acc11 = vmlaq_f32(acc11, b11, a5);
            acc21 = vmlaq_f32(acc21, b11, a6);
            acc31 = vmlaq_f32(acc31, b11, a7);

            mtx_a0 += 8;
            mtx_b0 += 8;
            mtx_b1 += 8;

            a0  = vld1q_dup_f32(mtx_a0 + 0);
            a1  = vld1q_dup_f32(mtx_a0 + 1);
            a2  = vld1q_dup_f32(mtx_a0 + 2);
            a3  = vld1q_dup_f32(mtx_a0 + 3);
            b00 = vld1q_f32(mtx_b0);
            b10 = vld1q_f32(mtx_b1);
            b01 = vld1q_f32(mtx_b0 + 4);
            b11 = vld1q_f32(mtx_b1 + 4);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b00, a0);
            acc10 = vmlaq_f32(acc10, b00, a1);
            acc20 = vmlaq_f32(acc20, b00, a2);
            acc30 = vmlaq_f32(acc30, b00, a3);

            a4 = vld1q_dup_f32(mtx_a0 + 4);
            a5 = vld1q_dup_f32(mtx_a0 + 5);
            a6 = vld1q_dup_f32(mtx_a0 + 6);
            a7 = vld1q_dup_f32(mtx_a0 + 7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b10, a0);
            acc11 = vmlaq_f32(acc11, b10, a1);
            acc21 = vmlaq_f32(acc21, b10, a2);
            acc31 = vmlaq_f32(acc31, b10, a3);

            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b01, a4);
            acc10 = vmlaq_f32(acc10, b01, a5);
            acc20 = vmlaq_f32(acc20, b01, a6);
            acc30 = vmlaq_f32(acc30, b01, a7);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b11, a4);
            acc11 = vmlaq_f32(acc11, b11, a5);
            acc21 = vmlaq_f32(acc21, b11, a6);
            acc31 = vmlaq_f32(acc31, b11, a7);

            mtx_a0 += 8;
            mtx_b0 += 8;
            mtx_b1 += 8;
        }

        for(; mtx_b0 < mtx_b0_end_addr;)
        {
            float32x4_t a0  = vld1q_dup_f32(mtx_a0 + 0);
            float32x4_t a1  = vld1q_dup_f32(mtx_a0 + 1);
            float32x4_t a2  = vld1q_dup_f32(mtx_a0 + 2);
            float32x4_t a3  = vld1q_dup_f32(mtx_a0 + 3);
            float32x4_t b00 = vld1q_f32(mtx_b0);
            float32x4_t b10 = vld1q_f32(mtx_b1);

#if __arm__
            asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_a0)));
            asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b0)));
            asm volatile("PLD [%0, #128*2]" ::"r"(reinterpret_cast<const uint8_t *>(mtx_b1)));
#endif /* __arm__ */
            // 4x4 block 0
            acc00 = vmlaq_f32(acc00, b00, a0);
            acc10 = vmlaq_f32(acc10, b00, a1);
            acc20 = vmlaq_f32(acc20, b00, a2);
            acc30 = vmlaq_f32(acc30, b00, a3);

            // 4x4 block 1
            acc01 = vmlaq_f32(acc01, b10, a0);
            acc11 = vmlaq_f32(acc11, b10, a1);
            acc21 = vmlaq_f32(acc21, b10, a2);
            acc31 = vmlaq_f32(acc31, b10, a3);

            mtx_a0 += 4;
            mtx_b0 += 4;
            mtx_b1 += 4;
        }

        // Multiply by the weight of matrix product (alpha)
        if(multiply_alpha)
        {
            const float32x4_t alpha_f32 = vdupq_n_f32(alpha);
            acc00                       = vmulq_f32(acc00, alpha_f32);
            acc10                       = vmulq_f32(acc10, alpha_f32);
            acc20                       = vmulq_f32(acc20, alpha_f32);
            acc30                       = vmulq_f32(acc30, alpha_f32);
            acc01                       = vmulq_f32(acc01, alpha_f32);
            acc11                       = vmulq_f32(acc11, alpha_f32);
            acc21                       = vmulq_f32(acc21, alpha_f32);
            acc31                       = vmulq_f32(acc31, alpha_f32);
        }

        const auto mtx_out0 = reinterpret_cast<float *>(out.ptr());
        const auto mtx_out1 = mtx_out0 + 4;

        // Store the 4 blocks
        vst1q_f32(mtx_out0, acc00);
        vst1q_f32(mtx_out1, acc01);
        vst1q_f32(mtx_out0 + out_stride1, acc10);
        vst1q_f32(mtx_out1 + out_stride1, acc11);
        vst1q_f32(mtx_out0 + out_stride2, acc20);
        vst1q_f32(mtx_out1 + out_stride2, acc21);
        vst1q_f32(mtx_out0 + out_stride3, acc30);
        vst1q_f32(mtx_out1 + out_stride3, acc31);
    },
    ina, inb, out);
}

template <bool multiply_alpha>
void matrix_matrix_multiply_f16(const ITensor *input0, const ITensor *input1, ITensor *output, const Window &window, float alpha)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    const size_t in_b_stride          = input1->info()->strides_in_bytes()[1] / data_size_from_type(input1->info()->data_type());
    const size_t out_stride           = output->info()->strides_in_bytes()[1] / data_size_from_type(output->info()->data_type());
    const int    num_elems_matrix_b_x = input1->info()->dimension(0);

    // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
    Window win_a(window);
    win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
    win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, std::max(window.y().end() / 4, 1), 1));

    Window win_b;
    // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
    // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
    if(input1->info()->num_dimensions() >= 3)
    {
        win_b = window;
    }
    // Set step_x and step_y for matrix B. Scale by a factor of 8 the X range as the input transposed matrix A has 8 times less the cols of the output matrix
    win_b.set(Window::DimX, Window::Dimension(window.x().start() / 8, window.x().end() / 8, in_b_stride));
    win_b.set(Window::DimY, Window::Dimension(0, 1, 0));

    Iterator ina(input0, win_a);
    Iterator inb(input1, win_b);
    Iterator out(output, window);

    const float16x8_t alpha_f16 = vdupq_n_f16(alpha);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const auto   *mtx_a0  = reinterpret_cast<const float16_t *>(ina.ptr());
        const auto   *mtx_b0  = reinterpret_cast<const float16_t *>(inb.ptr());
        auto         *mtx_out = reinterpret_cast<float16_t *>(out.ptr());
        float16x8x4_t c =
        {
            {
                vdupq_n_f16(0.f),
                vdupq_n_f16(0.f),
                vdupq_n_f16(0.f),
                vdupq_n_f16(0.f)
            }
        };

        /*
        This kernel puts the values in a 4x4 block of Matrix A on the same row (Interleaved values)
             |a00 a01 a02 a03 | a04 a05 a06 a07|
             |a10 a11 a12 a13 | a14 a15 a16 a17|
             |a20 a21 a22 a23 | a24 a25 a26 a27| = | a00 a10 a20 a30 || a01 a11 a21 a31 || a02 a12 a22 a32 || a03 a13 a23 a33 | a40 a50 a60 a70 | ...
             |a30 a31 a32 a33 | a34 a35 a36 a37|   | a04 a14 a24 a34 || a05 a15 a25 a35 || a06 a15 a26 a36 || a07 a17 a27 a37 | a44 a54 a64 a74 | ...
             |a40 a41 a42 a43 | a44 a45 a46 a47|
             |a50 a51 a52 a53 | a54 a55 a56 a57|
             |a60 a61 a62 a63 | a64 a65 a66 a67|
             |a70 a71 a72 a73 | a74 a75 a76 a77|

             After this operation, the output matrix will have the following shape: [ height * 4, width / 4 ]

        B Matrix has been transposed as shown below

           |b00 b01 b02 b03 b04 b05 b06 b07|
           |b10 b11 b12 b13 b14 b15 b16 b17|
           |b20 b21 b22 b23 b24 b25 b26 b27|
           |b30 b31 b32 b33 b34 b35 b36 b37|
          ------------------->

           |b00 b01 b02 b03 b04 b05 b06 b07||b10 b11 b12 b13 b14 b15 b16 b17||b20 b21 b22 b23 b24 b25 b26 b27||b30 b31 b32 b33 b34 b35 b36 b37|

            c.val[0][0] = a00*b00 + a01*b10 + a02*b20 + a03*b30
            c.val[0][1] = a00*b01 + a01*b11 + a02*b21 + a03*b31

        The size of the output tensor's XY-plane must be the following shape [ width * 8, height / 8 ]. All other dimensions must have the same size.
        */
        const float16_t *mtx_b0_end_addr = mtx_b0 + num_elems_matrix_b_x;

        for(; mtx_b0 <= (mtx_b0_end_addr - 32);)

        {
            const float16x8_t p00 = vld1q_f16(mtx_a0);
            const float16x8_t p02 = vld1q_f16(mtx_a0 + 8);

            const float16x8_t q00 = vld1q_f16(mtx_b0);
            const float16x8_t q02 = vld1q_f16(mtx_b0 + 8);
            const float16x8_t q04 = vld1q_f16(mtx_b0 + 16);
            const float16x8_t q06 = vld1q_f16(mtx_b0 + 24);

            c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vgetq_lane_f16(p00, 0)));
            c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vgetq_lane_f16(p00, 1)));
            c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vgetq_lane_f16(p00, 2)));
            c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vgetq_lane_f16(p00, 3)));

            c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q02, vgetq_lane_f16(p00, 4)));
            c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q02, vgetq_lane_f16(p00, 5)));
            c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q02, vgetq_lane_f16(p00, 6)));
            c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q02, vgetq_lane_f16(p00, 7)));

            c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q04, vgetq_lane_f16(p02, 0)));
            c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q04, vgetq_lane_f16(p02, 1)));
            c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q04, vgetq_lane_f16(p02, 2)));
            c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q04, vgetq_lane_f16(p02, 3)));

            c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q06, vgetq_lane_f16(p02, 4)));
            c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q06, vgetq_lane_f16(p02, 5)));
            c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q06, vgetq_lane_f16(p02, 6)));
            c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q06, vgetq_lane_f16(p02, 7)));

            mtx_a0 += 16;
            mtx_b0 += 32;
        }

        for(; mtx_b0 < mtx_b0_end_addr;)

        {
            const float16x4_t p00 = vld1_f16(mtx_a0);
            const float16x8_t q00 = vld1q_f16(mtx_b0);

            c.val[0] = vaddq_f16(c.val[0], vmulq_n_f16(q00, vget_lane_f16(p00, 0)));
            c.val[1] = vaddq_f16(c.val[1], vmulq_n_f16(q00, vget_lane_f16(p00, 1)));
            c.val[2] = vaddq_f16(c.val[2], vmulq_n_f16(q00, vget_lane_f16(p00, 2)));
            c.val[3] = vaddq_f16(c.val[3], vmulq_n_f16(q00, vget_lane_f16(p00, 3)));

            mtx_a0 += 4;
            mtx_b0 += 8;
        }

        if(multiply_alpha)
        {
            c.val[0] = vmulq_f16(c.val[0], alpha_f16);
            c.val[1] = vmulq_f16(c.val[1], alpha_f16);
            c.val[2] = vmulq_f16(c.val[2], alpha_f16);
            c.val[3] = vmulq_f16(c.val[3], alpha_f16);
        }

        vst1q_f16(mtx_out + 0 * out_stride, c.val[0]);
        vst1q_f16(mtx_out + 1 * out_stride, c.val[1]);
        vst1q_f16(mtx_out + 2 * out_stride, c.val[2]);
        vst1q_f16(mtx_out + 3 * out_stride, c.val[3]);
    },
    ina, inb, out);
#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    ARM_COMPUTE_UNUSED(input0);
    ARM_COMPUTE_UNUSED(input1);
    ARM_COMPUTE_UNUSED(output);
    ARM_COMPUTE_UNUSED(window);
    ARM_COMPUTE_UNUSED(alpha);
    ARM_COMPUTE_ERROR("Not implemented");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}

inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_UNUSED(alpha);

    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input0);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1, output);

    if(!is_interleaved)
    {
        ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));

        if(output->total_size() != 0)
        {
            ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
            ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
        }
    }
    else
    {
        const int m                         = reshape_info.m();
        const int n                         = reshape_info.n();
        const int k                         = reshape_info.k();
        const int mult_transpose1xW_width   = reshape_info.mult_transpose1xW_width();
        const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();

        /* Interleave */
        TensorShape tensor_shape0{ input0->tensor_shape() };
        tensor_shape0.set(0, k);
        tensor_shape0.set(1, m);

        const TensorInfo tensor_info0          = input0->clone()->set_tensor_shape(tensor_shape0);
        const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(misc::shape_calculator::compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);

        if(n != 0) /* Transpose */
        {
            TensorShape tensor_shape1{ input1->tensor_shape() };
            tensor_shape1.set(0, n);
            tensor_shape1.set(1, k);

            const TensorInfo tensor_info1          = input1->clone()->set_tensor_shape(tensor_shape1);
            const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(misc::shape_calculator::compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
        }

        if(output->total_size() != 0)
        {
            if(n != 0)
            {
                ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
            }
            ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
        }
    }

    return Status{};
}

inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output)
{
    bool   window_changed{};
    Window win{};

    unsigned int       num_elems_processed_per_iteration_x = 0;
    const unsigned int num_elems_processed_per_iteration_y = 4;

    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
    if((output->dimension(1) == 1))
    {
        switch(input0->data_type())
        {
            case DataType::F32:
            {
                num_elems_processed_per_iteration_x = 16;
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                num_elems_processed_per_iteration_x = 32;
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            default:
            {
                ARM_COMPUTE_ERROR("Data type not supported");
                break;
            }
        }

        // Configure kernel window
        win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x));

        AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_x);

        window_changed = update_window_and_padding(win,
                                                   AccessWindowStatic(input0, 0, 0, input0->tensor_shape().x(), 1),
                                                   AccessWindowHorizontal(input1, 0, num_elems_processed_per_iteration_x),
                                                   output_access);

        Coordinates coord;
        coord.set_num_dimensions(output->num_dimensions());
        output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape()));
    }
    else
    {
        switch(input0->data_type())
        {
            case DataType::F32:
            {
                num_elems_processed_per_iteration_x = 8;
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                num_elems_processed_per_iteration_x = 8;
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            default:
            {
                ARM_COMPUTE_ERROR("Data type not supported");
                break;
            }
        }

        // Configure kernel window
        win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));

        AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);

        window_changed = update_window_and_padding(win,
                                                   AccessWindowRectangle(input0, 0, 0, 4, 1, 1.f, 0.25f),
                                                   AccessWindowStatic(input1, 0, 0, input1->tensor_shape().x(), ceil_to_multiple(input1->tensor_shape().y(), 4)),
                                                   output_access);

        output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

NEGEMMMatrixMultiplyKernel::NEGEMMMatrixMultiplyKernel()
    : _input0(nullptr), _input1(nullptr), _output(nullptr), _alpha(1.0f)
{
}

void NEGEMMMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output, float alpha, bool is_interleaved, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);

    // Output tensor auto inizialitation if not yet initialized
    TensorShape tensor_shape{ input0->info()->tensor_shape() };
    tensor_shape.set(0, is_interleaved ? reshape_info.n() : input1->info()->dimension(0));
    tensor_shape.set(1, is_interleaved ? reshape_info.m() : input0->info()->dimension(1));

    auto_init_if_empty(*output->info(), input0->info()->clone()->set_tensor_shape(tensor_shape));

    // Perform validate step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), alpha, is_interleaved, reshape_info));

    _input0 = input0;
    _input1 = input1;
    _output = output;
    _alpha  = alpha;

    // Configure kernel window
    auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

Status NEGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved,
                                            const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, alpha, is_interleaved, reshape_info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(), input1->clone().get(), output->clone().get()).first);

    return Status{};
}

void NEGEMMMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    const bool multiply_alpha = !(helpers::float_ops::is_one(_alpha));

    // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
    if((_output->info()->dimension(1) == 1))
    {
        switch(_input0->info()->data_type())
        {
            case DataType::F32:
            {
                multiply_alpha ? vector_matrix_multiply_f32<true>(_input0, _input1, _output, window, info, _alpha) :
                vector_matrix_multiply_f32<false>(_input0, _input1, _output, window, info, _alpha);
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                multiply_alpha ? vector_matrix_multiply_f16<true>(_input0, _input1, _output, window, info, _alpha) :
                vector_matrix_multiply_f16<false>(_input0, _input1, _output, window, info, _alpha);
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            default:
            {
                ARM_COMPUTE_ERROR("Data type not supported");
                break;
            }
        }
    }
    else
    {
        switch(_input0->info()->data_type())
        {
            case DataType::F32:
            {
                multiply_alpha ? matrix_matrix_multiply_f32<true>(_input0, _input1, _output, window, _alpha) :
                matrix_matrix_multiply_f32<false>(_input0, _input1, _output, window, _alpha);
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                multiply_alpha ? matrix_matrix_multiply_f16<true>(_input0, _input1, _output, window, _alpha) :
                matrix_matrix_multiply_f16<false>(_input0, _input1, _output, window, _alpha);
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            default:
            {
                ARM_COMPUTE_ERROR("Data type not supported");
                break;
            }
        }
    }
}