aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.cpp
blob: db6cb10995e02a4e9fe31283bd7c6b5ba3a90cfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
 * Copyright (c) 2017-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

#include <arm_neon.h>
#include <cstddef>
#include <cstdint>

using namespace arm_compute;

namespace arm_compute
{
class Coordinates;
} // namespace arm_compute

namespace
{
Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
                          int32_t a_offset, int32_t b_offset)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);

    // If a_offset == 0, vector_sum_col can be a nullptr
    if(a_offset != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
        ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
    }

    // If b_offset == 0, vector_sum_row can be a nullptr
    if(b_offset != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);

        // Check if input is a 3D reinterpretation
        const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();

        // Validate input
        ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
        ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));

        TensorShape output_shape = mm_result->tensor_shape();
        if(output_shape.num_dimensions() > 1)
        {
            const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;

            TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
            vector_sum_row_shape.collapse_from(1);
            output_shape.collapse_from(output_batch_idx);

            ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
                                            "mm_result tensor must have the same number of batches of output tensor");

            if(a_offset != 0)
            {
                TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
                vector_sum_col_shape.collapse_from(1);

                ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
                                                "vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
            }
        }
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *vector_sum_col, ITensorInfo *vector_sum_row,
                                                        int32_t a_offset, int32_t b_offset)
{
    constexpr unsigned int num_elems_processed_per_iteration = 16;
    bool                   window_changed                    = false;

    // Configure kernel window
    Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal mm_result_access(mm_result, 0, num_elems_processed_per_iteration);
    window_changed = window_changed || update_window_and_padding(win, mm_result_access);

    if(a_offset != 0)
    {
        AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration);
        window_changed = window_changed || update_window_and_padding(win, vector_sum_col_access);
    }
    if(b_offset != 0)
    {
        AccessWindowStatic vector_sum_row_access(vector_sum_row, 0, 0, vector_sum_row->dimension(0), 0); // NOLINT
        window_changed = window_changed || update_window_and_padding(win, vector_sum_row_access);
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

void run_offset_contribution(const Window &window,
                             ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row,
                             int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col, bool is_gemm3d)
{
    Window collapsed_window = window.collapse_if_possible(window, Window::DimZ);

    const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
    const int depth_input  = is_gemm3d ? mm_result->info()->dimension(2) : 1;

    if((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true
    {
        // Set window for vector_sum_col
        Window win_vector_sum_col(collapsed_window);
        win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
        win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));

        // Set window for vector_sum_row
        Window win_vector_sum_row(collapsed_window);
        win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
        win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
        win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));

        Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
        Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
        Iterator mm_result_it(mm_result, window);

        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();

        // Offset in case vector_sum_col is batched
        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;

        execute_window_loop(collapsed_window, [&](const Coordinates & id)
        {
            const int  batch_id           = id.z() / depth_input;
            const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);

            // Compute the leftover term due to a_offset.
            int32x4x4_t a_offset_term_s32 =
            {
                {
                    vld1q_s32(vector_sum_col_ptr + 0),
                    vld1q_s32(vector_sum_col_ptr + 4),
                    vld1q_s32(vector_sum_col_ptr + 8),
                    vld1q_s32(vector_sum_col_ptr + 12)
                }
            };

            a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
            a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
            a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
            a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);

            // Compute the leftover term due to b_offset.
            int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y()
                                                        + (id.z() % depth_input) * height_input);
            b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);

            // Add a_offset_term_s32 and b_offset_term_s32
            int32x4x4_t offset_term_s32 =
            {
                {
                    vdupq_n_s32(k_offset),
                    vdupq_n_s32(k_offset),
                    vdupq_n_s32(k_offset),
                    vdupq_n_s32(k_offset)
                }
            };

            offset_term_s32.val[0] = vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32));
            offset_term_s32.val[1] = vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32));
            offset_term_s32.val[2] = vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32));
            offset_term_s32.val[3] = vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32));

            int32x4x4_t in_s32 =
            {
                {
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 0),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 4),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 8),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 12)
                }
            };

            // Add the offset terms to GEMM's result
            in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
            in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
            in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
            in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);

            // Store the result with the offset contribution
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 0, in_s32.val[0]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 4, in_s32.val[1]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 8, in_s32.val[2]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 12, in_s32.val[3]);
        },
        vector_sum_col_it, vector_sum_row_it, mm_result_it);
    }
    else if((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true
    {
        ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);

        // Set window for vector_sum_row
        Window win_vector_sum_row(collapsed_window);
        win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
        win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
        win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));

        Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
        Iterator mm_result_it(mm_result, window);

        const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();

        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int batch_id = id.z() / depth_input;

            // Compute the leftover term due to b_offset.
            int32x4_t b_offset_term_s32 = vld1q_dup_s32(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) + id.y()
                                                        + (id.z() % depth_input) * height_input);
            b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);

            int32x4x4_t in_s32 =
            {
                {
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 0),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 4),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 8),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 12)
                }
            };

            // Add the offset terms to GEMM's result
            in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32);
            in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32);
            in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32);
            in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32);

            // Store the result with the offset contribution
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 0, in_s32.val[0]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 4, in_s32.val[1]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 8, in_s32.val[2]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 12, in_s32.val[3]);
        },
        vector_sum_row_it, mm_result_it);
    }
    else if((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false
    {
        // Set window for vector_sum_col
        Window win_vector_sum_col(collapsed_window);
        win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
        win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));

        Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
        Iterator mm_result_it(mm_result, window);

        // Offset in case vector_sum_col is batched
        const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;

        execute_window_loop(window, [&](const Coordinates & id)
        {
            const int  batch_id           = id.z() / depth_input;
            const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);

            // Compute the leftover term due to a_offset.
            int32x4x4_t a_offset_term_s32 =
            {
                {
                    vld1q_s32(vector_sum_col_ptr + 0),
                    vld1q_s32(vector_sum_col_ptr + 4),
                    vld1q_s32(vector_sum_col_ptr + 8),
                    vld1q_s32(vector_sum_col_ptr + 12)
                }
            };

            a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
            a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
            a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
            a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);

            int32x4x4_t in_s32 =
            {
                {
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 0),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 4),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 8),
                    vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + 12)
                }
            };

            // Add the offset terms to GEMM's result
            in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
            in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
            in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
            in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);

            // Store the result with the offset contribution
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 0, in_s32.val[0]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 4, in_s32.val[1]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 8, in_s32.val[2]);
            vst1q_s32(reinterpret_cast<int32_t *>(mm_result_it.ptr()) + 12, in_s32.val[3]);
        },
        vector_sum_col_it, mm_result_it);
    }
    else // false, false
    {
        // No offset contribution from matrix A and matrix B
        return;
    }
}
} // namespace

NEGEMMLowpOffsetContributionKernel::NEGEMMLowpOffsetContributionKernel()
    : _vector_sum_col(nullptr), _vector_sum_row(nullptr), _mm_result(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true)
{
}

void NEGEMMLowpOffsetContributionKernel::configure(ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, int32_t k, int32_t a_offset, int32_t b_offset)
{
    // Perform validate step
    ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
                                                  vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT
                                                  vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT
                                                  a_offset, b_offset));                                         // NOLINT

    _vector_sum_col = vector_sum_col;
    _vector_sum_row = vector_sum_row;
    _mm_result      = mm_result;
    _a_offset       = a_offset;
    _b_offset       = b_offset;
    _k_offset       = a_offset * b_offset * k;

    // If a_offset == 0, vector_sum_col can be a nullptr
    if(a_offset != 0)
    {
        // Check if vector_sum_col_shape should be slidden or not
        // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
        // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
        _slide_vector_sum_col = vector_sum_col->info()->tensor_shape().num_dimensions() > 1;
    }

    // Configure kernel window
    auto win_config = validate_and_configure_window(mm_result->info(),
                                                    vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT
                                                    vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT
                                                    a_offset, b_offset);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);
}

Status NEGEMMLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row,
                                                    int32_t a_offset, int32_t b_offset)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(),
                                                              vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
                                                              vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
                                                              a_offset, b_offset)
                                .first); // NOLINT

    return Status{};
}

void NEGEMMLowpOffsetContributionKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);

    // Check if input is a 3D reinterpretation
    const bool reinterpret_as_3d = _vector_sum_row != nullptr
                                   && _mm_result->info()->num_dimensions() > 1
                                   && _mm_result->info()->tensor_shape().y() != _vector_sum_row->info()->tensor_shape().x();

    run_offset_contribution(window, _mm_result, _vector_sum_col, _vector_sum_row, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, reinterpret_as_3d);
}