aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEElementwiseOperationKernel.cpp
blob: 213103a830f29c9fb6f970913775f96643f23c57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
/*
 * Copyright (c) 2018-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"

#include <arm_neon.h>
#include <map>

namespace arm_compute
{
namespace
{
float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
    qasymm8x16_t        x = vld1q_u8(input1_ptr);
    const float32x4x4_t out =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
        }
    };
    return out;
}

float32x4x4_t load_quantized_signed(const int8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
    qasymm8x16_signed_t x = vld1q_s8(input1_ptr);
    const float32x4x4_t out =
    {
        {
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_low_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_low_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
            vmulq_f32(vcvtq_f32_s32(vsubq_s32(vmovl_s16(vget_high_s16(vmovl_s8(vget_high_s8(x)))), offset)), scale),
        }
    };
    return out;
}

void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out)
{
    const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1])));
    const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3])));
    vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}

void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out)
{
    const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
    const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
    vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}

void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
    int32x4x4_t out =
    {
        {
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
        }
    };
    store_quantized(output_ptr, out);
}

void store_quantized_signed(int8_t *output_ptr, const int32x4x4_t &out)
{
    const int8x8_t pa = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
    const int8x8_t pb = vqmovn_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
    vst1q_s8(output_ptr, vcombine_s8(pa, pb));
}

void store_quantized_signed(int8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
    int32x4x4_t out =
    {
        {
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
            vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
        }
    };
    store_quantized_signed(output_ptr, out);
}

template <ArithmeticOperation op, typename ScalarType>
inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b)
{
    auto res = ScalarType(0);

    switch(op)
    {
        case ArithmeticOperation::MAX:
            res = std::max(a, b);
            break;
        case ArithmeticOperation::MIN:
            res = std::min(a, b);
            break;
        case ArithmeticOperation::SQUARED_DIFF:
        {
            res = (a - b) * (a - b);
            break;
        }
        case ArithmeticOperation::PRELU:
        {
            res = (a > 0 ? a : a * b);
            break;
        }
        case ArithmeticOperation::DIV:
        {
            res = a / b;
            break;
        }
        case ArithmeticOperation::POWER:
        {
            res = std::pow(a, b);
            break;
        }
        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }
    return res;
}

template <ArithmeticOperation op>
inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    return quantize_qasymm8(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}

template <ArithmeticOperation op>
inline int8_t elementwise_arithm_op_quantized_signed_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    return quantize_qasymm8_signed(elementwise_arithm_op_scalar<op>(a, b), qinfo);
}

template <ArithmeticOperation    op, typename VectorType>
inline typename VectorType::type elementwise_arithm_op(const typename VectorType::type &a, const typename VectorType::type &b)
{
    using vec_type    = typename VectorType::type;
    using scalar_type = typename VectorType::scalar_type;
    using tag_type    = typename VectorType::tag_type;

    vec_type res = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});

    switch(op)
    {
        case ArithmeticOperation::MAX:
            res = wrapper::vmax(a, b);
            break;
        case ArithmeticOperation::MIN:
            res = wrapper::vmin(a, b);
            break;
        case ArithmeticOperation::SQUARED_DIFF:
        {
            const vec_type tmp = wrapper::vsub(a, b);
            res                = wrapper::vmul(tmp, tmp);
            break;
        }
        case ArithmeticOperation::PRELU:
        {
            const vec_type zero = wrapper::vdup_n(static_cast<scalar_type>(0), tag_type{});
            const vec_type tmp  = wrapper::vmul(a, b);
            const auto     gt   = wrapper::vcgt(a, zero);

            res = wrapper::vbsl(gt, a, tmp);
            break;
        }

        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }

    return res;
}

template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
    return wrapper::vdiv(a, b);
}

template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float, 4>>(const float32x4_t &a, const float32x4_t &b)
{
    return wrapper::vpow(a, b);
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::DIV, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
    return wrapper::vdiv(a, b);
}

template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::POWER, typename wrapper::traits::neon_vector<float16_t, 8>>(const float16x8_t &a, const float16x8_t &b)
{
    return wrapper::vpow(a, b);
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

template <ArithmeticOperation op>
inline float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
    using neon_vector_float = wrapper::traits::neon_vector<float, 4>;
    float32x4x4_t out =
    {
        {
            elementwise_arithm_op<op, neon_vector_float>(a.val[0], b.val[0]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[1], b.val[1]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[2], b.val[2]),
            elementwise_arithm_op<op, neon_vector_float>(a.val[3], b.val[3]),
        }
    };
    return out;
}

template <ArithmeticOperation    op, typename ScalarType, typename VectorType>
inline typename VectorType::type elementwise_arithm_op_broadcast(const typename VectorType::type &a, const ScalarType &broadcast_value, const bool reorder)
{
    using tag_type = typename VectorType::tag_type;
    using vec_type = typename VectorType::type;

    vec_type broadcast_vector = wrapper::vdup_n(broadcast_value, tag_type{});
    return elementwise_arithm_op<op, VectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}

template <ComparisonOperation op, typename InputScalarType>
inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b)
{
    bool res = false;

    switch(op)
    {
        case ComparisonOperation::Equal:
            res = (a == b);
            break;
        case ComparisonOperation::NotEqual:
            res = (a != b);
            break;
        case ComparisonOperation::Greater:
            res = (a > b);
            break;
        case ComparisonOperation::GreaterEqual:
            res = (a >= b);
            break;
        case ComparisonOperation::Less:
            res = (a < b);
            break;
        case ComparisonOperation::LessEqual:
            res = (a <= b);
            break;
        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }
    return res ? ~static_cast<uint8_t>(0) : static_cast<uint8_t>(0);
}

template <ComparisonOperation op>
inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, UniformQuantizationInfo qinfo)
{
    ARM_COMPUTE_UNUSED(qinfo);
    return elementwise_comp_op_scalar<op>(a, b);
}

template <ComparisonOperation op, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b)
{
    OutputVectorType res = { 0, 0, 0, 0 };

    switch(op)
    {
        case ComparisonOperation::Equal:
            res = wrapper::vceq(a, b);
            break;
        case ComparisonOperation::NotEqual:
            res = wrapper::vnot(wrapper::vceq(a, b));
            break;
        case ComparisonOperation::Greater:
            res = wrapper::vcgt(a, b);
            break;
        case ComparisonOperation::GreaterEqual:
            res = wrapper::vcge(a, b);
            break;
        case ComparisonOperation::Less:
            res = wrapper::vcgt(b, a);
            break;
        case ComparisonOperation::LessEqual:
            res = wrapper::vcge(b, a);
            break;
        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }

    return res;
}

template <ComparisonOperation op>
inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
    uint32x4x4_t out =
    {
        {
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[0], b.val[0]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[1], b.val[1]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[2], b.val[2]),
            elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[3], b.val[3])
        }
    };
    return out;
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder)
{
    InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
    return elementwise_comp_op<op, InputVectorType, OutputVectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}

template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x,
                                      const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const auto a = wrapper::vloadq(input1_ptr + x);
        const auto b = wrapper::vloadq(input2_ptr + x);
        wrapper::vstore(output_ptr + x, elementwise_arithm_op<op, VectorType>(a, b));
    }
    return x;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
                                                const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
                                                int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                float32x4_t voffseto, float32x4_t invvscaleo)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        // Get inputs and compute output
        const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
        const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
        store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_singed_loop(int window_start_x, int window_end_x, int window_step_x,
                                                       const int8_t *input1_ptr, const int8_t *input2_ptr, int8_t *output_ptr,
                                                       int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                       float32x4_t voffseto, float32x4_t invvscaleo)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        // Get inputs and compute output
        const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
        const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
        store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
        wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast<op, ScalarType, VectorType>(a, broadcast_value, reorder));
    }
    return x;
}

template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                          const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                          int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                          float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                                 const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, int8_t *output_ptr,
                                                                 int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                                 float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized_signed(output_ptr + x, rf, voffseto, invvscaleo);
    }
    return x;
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x,
                                       const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const auto a   = wrapper::vloadq(input1_ptr + x);
        const auto b   = wrapper::vloadq(input2_ptr + x);
        const auto res = elementwise_comp_op<op, InputVectorType, uint16x8_t>(a, b);
        wrapper::vstore(output_ptr + x, wrapper::vmovn(res));
    }
    return x;
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x,
                                       const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        auto       a    = wrapper::vloadq(input1_ptr + x);
        auto       b    = wrapper::vloadq(input2_ptr + x);
        const auto res  = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
        a               = wrapper::vloadq(input1_ptr + x + 4);
        b               = wrapper::vloadq(input2_ptr + x + 4);
        const auto res2 = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
        wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2))));
    }
    if(x <= window_end_x - 4)
    {
        const auto a   = wrapper::vloadq(input1_ptr + x);
        const auto b   = wrapper::vloadq(input2_ptr + x);
        const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
        for(int i = 0; i < 4; i++)
        {
            *(output_ptr + x + i) = wrapper::vgetlane(res, i);
        }
        x = +4;
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
                                              const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
                                              int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                              float32x4_t voffseto, float32x4_t invvscaleo)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_loop(int window_start_x, int window_end_x, int window_step_x,
                                                     const int8_t *input1_ptr, const int8_t *input2_ptr, uint8_t *output_ptr,
                                                     int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
                                                     float32x4_t voffseto, float32x4_t invvscaleo)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(input1_ptr + x, voffset1, vscale1);
        const float32x4x4_t bf = load_quantized_signed(input2_ptr + x, voffset2, vscale2);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(af, bf);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x,
                                                 const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint16x8_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
        wrapper::vstore(output_ptr + x, wrapper::vmovn(a));
    }
    return x;
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x,
                                                 const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder);
        const auto b = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder);
        wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b))));
    }
    if(x <= window_end_x - 4)
    {
        const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
        for(int i = 0; i < 4; i++)
        {
            *(output_ptr + x + i) = wrapper::vgetlane(a, i);
        }
        x = +4;
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                        const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                        int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                        float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_signed_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
                                                               const int8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
                                                               int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
                                                               float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
    ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
    int x = window_start_x;
    for(; x <= (window_end_x - window_step_x); x += window_step_x)
    {
        const float32x4x4_t af = load_quantized_signed(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
        const uint32x4x4_t  rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
        store_quantized(output_ptr + x, rf);
    }
    return x;
}

template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                    OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
                    int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool),
                    int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

    if(is_broadcast_across_x)
    {
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            auto                  output_ptr              = reinterpret_cast<OutputScalarType *>(output.ptr());
            const auto            non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
            const InputScalarType broadcast_value         = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const auto a      = *(non_broadcast_input_ptr + x);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            auto       output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
            const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr);
            for(; x < window_end_x; ++x)
            {
                const auto a      = *(input1_ptr + x);
                const auto b      = *(input2_ptr + x);
                *(output_ptr + x) = (*scalar_func)(a, b);
            }
        },
        input1, input2, output);
    }
}

void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                              uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                              int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
                                                    float32x4_t, float32x4_t, const bool),
                              int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *,
                                               int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                               float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    // Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset + 0.5f);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());

            const uint8_t       broadcast_value  = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_u8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

void elementwise_comp_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                                       uint8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                                       int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
                                                             float32x4_t, float32x4_t, const bool),
                                       int (*neon_func)(int, int, int, const int8_t *, const int8_t *, uint8_t *,
                                                        int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                                        float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<uint8_t *>(output.ptr());

            const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

void elementwise_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
                                     int8_t (*scalar_func)(const float &, const float &, UniformQuantizationInfo),
                                     int (*broadcast_func)(int, int, int, const int8_t *, float32x4x4_t, int8_t *, int32x4_t, float32x4_t,
                                                           float32x4_t, float32x4_t, const bool),
                                     int (*neon_func)(int, int, int, const int8_t *, const int8_t *, int8_t *,
                                                      int32x4_t, int32x4_t, float32x4_t, float32x4_t,
                                                      float32x4_t, float32x4_t))
{
    // Create input windows
    Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
    Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());

    // Clear X Dimension on execution window as we handle manually
    Window win = window;
    win.set(Window::DimX, Window::Dimension(0, 1, 1));

    const int  window_step_x         = 16;
    const auto window_start_x        = static_cast<int>(window.x().start());
    const auto window_end_x          = static_cast<int>(window.x().end());
    const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);

    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();

    const float32x4_t voffseto   = vdupq_n_f32(output_qinfo.offset);
    const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_qinfo.scale);

    if(is_broadcast_across_x)
    {
        // Select the broadcast input on the X axis
        const bool     is_broadcast_input_2 = input2_win.x().step() == 0;
        Window         broadcast_win        = is_broadcast_input_2 ? input2_win : input1_win;
        Window         non_broadcast_win    = !is_broadcast_input_2 ? input2_win : input1_win;
        const ITensor *broadcast_tensor     = is_broadcast_input_2 ? in2 : in1;
        const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;

        const UniformQuantizationInfo broadcast_qinfo     = broadcast_tensor->info()->quantization_info().uniform();
        const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();

        const int32x4_t   voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
        const float32x4_t vscale_non_broadcast  = vdupq_n_f32(non_broadcast_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator broadcast_input(broadcast_tensor, broadcast_win);
        Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto non_broadcast_input_ptr = reinterpret_cast<const int8_t *>(non_broadcast_input.ptr());
            const auto output_ptr              = reinterpret_cast<int8_t *>(output.ptr());

            const int8_t        broadcast_value  = *reinterpret_cast<const int8_t *>(broadcast_input.ptr());
            const float32x4x4_t broadcast_vector = vdequantize(vdupq_n_s8(broadcast_value), broadcast_qinfo);

            int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
                                      voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(non_broadcast_input_ptr + x), non_broadcast_qinfo);
                const float bfs   = dequantize_qasymm8_signed(broadcast_value, broadcast_qinfo);
                *(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs, output_qinfo);
            }
        },
        broadcast_input, non_broadcast_input, output);
    }
    else
    {
        const UniformQuantizationInfo input1_qinfo = in1->info()->quantization_info().uniform();
        const UniformQuantizationInfo input2_qinfo = in2->info()->quantization_info().uniform();

        // Input1 quantization info
        const int32x4_t   voffset1 = vdupq_n_s32(input1_qinfo.offset);
        const float32x4_t vscale1  = vdupq_n_f32(input1_qinfo.scale);

        // Input2 quantization info
        const int32x4_t   voffset2 = vdupq_n_s32(input2_qinfo.offset);
        const float32x4_t vscale2  = vdupq_n_f32(input2_qinfo.scale);

        // Clear X Dimension on execution window as we handle manually
        input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
        input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));

        Iterator input1(in1, input1_win);
        Iterator input2(in2, input2_win);
        Iterator output(out, win);

        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto input1_ptr = reinterpret_cast<const int8_t *>(input1.ptr());
            const auto input2_ptr = reinterpret_cast<const int8_t *>(input2.ptr());
            const auto output_ptr = reinterpret_cast<int8_t *>(output.ptr());

            int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
                                 vscale1, vscale2, voffseto, invvscaleo);
            for(; x < window_end_x; ++x)
            {
                const float afs   = dequantize_qasymm8_signed(*(input1_ptr + x), input1_qinfo);
                const float bfs   = dequantize_qasymm8_signed(*(input2_ptr + x), input2_qinfo);
                *(output_ptr + x) = (*scalar_func)(afs, bfs, output_qinfo);
            }
        },
        input1, input2, output);
    }
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
                                                              &elementwise_comp_op_scalar<op, InputScalarType>,
                                                              &elementwise_comp_op_broadcast_16_loop<op, InputScalarType, InputVectorType>,
                                                              &elementwise_comp_op_16_loop<op, InputScalarType, InputVectorType>);
}

template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
                                                              &elementwise_comp_op_scalar<op, InputScalarType>,
                                                              &elementwise_comp_op_broadcast_32_loop<op, InputScalarType, InputVectorType>,
                                                              &elementwise_comp_op_32_loop<op, InputScalarType, InputVectorType>);
}

template <ArithmeticOperation op, typename VectorType>
void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    using scalar_type = typename VectorType::scalar_type;

    elementwise_op<scalar_type, scalar_type, VectorType>(in1, in2, out, window,
                                                         &elementwise_arithm_op_scalar<op, scalar_type>,
                                                         &elementwise_arithm_op_broadcast_loop<op, scalar_type, VectorType>,
                                                         &elementwise_arithm_op_loop<op, scalar_type, VectorType>);
}

template <ArithmeticOperation op>
void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar<op>,
                             &elementwise_arithm_op_quantized_broadcast_loop<op>,
                             &elementwise_arithm_op_quantized_loop<op>);
}
template <ArithmeticOperation op>
void elementwise_arithm_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized_signed(in1, in2, out, window, &elementwise_arithm_op_quantized_signed_scalar<op>,
                                    &elementwise_arithm_op_quantized_signed_broadcast_loop<op>,
                                    &elementwise_arithm_op_quantized_singed_loop<op>);
}

template <ComparisonOperation op>
void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
                             &elementwise_comp_op_quantized_broadcast_loop<op>,
                             &elementwise_comp_op_quantized_loop<op>);
}

template <ComparisonOperation op>
void elementwise_comp_op_quantized_signed(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    elementwise_comp_quantized_signed(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
                                      &elementwise_comp_op_quantized_signed_broadcast_loop<op>,
                                      &elementwise_comp_op_quantized_signed_loop<op>);
}

std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output,
               std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function)
{
    std::string function_to_call("op_");
    function_to_call += string_from_data_type(input1->data_type()) + "_";
    function_to_call += string_from_data_type(input2->data_type()) + "_";
    function_to_call += string_from_data_type(output->data_type());

    auto it = map_function.find(function_to_call);

    if(it != map_function.end())
    {
        auto func = it->second;
        return [func](const ITensor * input1, const ITensor * input2, ITensor * output, const Window & window)
        {
            func(input1, input2, output, window);
        };
    }
    return nullptr;
}

template <ArithmeticOperation op>
std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_arithm_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
    {
        { "op_F32_F32_F32", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<float, 4>> },
        { "op_S16_S16_S16", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<int16_t, 8>> },
        { "op_S32_S32_S32", &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<int32_t, 4>> },
        { "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_arithm_op_quantized<op> },
        { "op_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED", &elementwise_arithm_op_quantized_signed<op> }
    };
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    map_function["op_F16_F16_F16"] = &elementwise_arithm_op<op, typename wrapper::traits::neon_vector<float16_t, 8>>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

    return configure_func(input1, input2, output, map_function);
}

template <ComparisonOperation op>
std::function<void(const ITensor *input1, const ITensor *input2, ITensor *output, const Window &window)>
configure_comp_func(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
    {
        { "op_F32_F32_U8", &elementwise_comp_op_32<op, float, float32x4_t> },
        { "op_S16_S16_U8", &elementwise_comp_op_16<op, int16_t, int16x8_t> },
        { "op_S32_S32_U8", &elementwise_comp_op_32<op, int32_t, int32x4_t> },
        { "op_QASYMM8_SIGNED_QASYMM8_SIGNED_U8", &elementwise_comp_op_quantized_signed<op> },
        { "op_QASYMM8_QASYMM8_U8", &elementwise_comp_op_quantized<op> }
    };
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    map_function["op_F16_F16_U8"] = &elementwise_comp_op_16<op, float16_t, float16x8_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

    return configure_func(input1, input2, output, map_function);
}
} // namespace

NEElementwiseOperationKernel::NEElementwiseOperationKernel()
    : _function(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}

Status NEElementwiseOperationKernel::validate_arguments_common(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);

    const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");

    // Validate in case of configured output
    if(output.total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
                                        "Wrong shape for output");
    }

    return Status{};
}

void NEElementwiseOperationKernel::configure_common(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);

    // Configure kernel window
    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
    const TensorShape &out_shape    = broadcast_pair.first;
    const ValidRegion &valid_region = broadcast_pair.second;

    // Auto initialize output if not initialized
    auto_init_if_empty(*output, out_shape, 1, input1->data_type());

    Window win = calculate_max_window(valid_region);

    INEKernel::configure(win);
}

void NEElementwiseOperationKernel::run_op(const InputTensorMap &inputs, const OutputTensorMap &outputs, const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info, window);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_function == nullptr);
    _function(inputs.at(TensorType::ACL_SRC_0), inputs.at(TensorType::ACL_SRC_1), outputs.at(TensorType::ACL_DST), window);
}

/** Arithmetic operators (min, max, squared_diff) */
void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
    configure_common(input1, input2, output);
    switch(op)
    {
        case ArithmeticOperation::MAX:
            _function = configure_arithm_func<ArithmeticOperation::MAX>(input1, input2, output);
            break;
        case ArithmeticOperation::MIN:
            _function = configure_arithm_func<ArithmeticOperation::MIN>(input1, input2, output);
            break;
        case ArithmeticOperation::SQUARED_DIFF:
            _function = configure_arithm_func<ArithmeticOperation::SQUARED_DIFF>(input1, input2, output);
            break;
        case ArithmeticOperation::PRELU:
            _function = configure_arithm_func<ArithmeticOperation::PRELU>(input1, input2, output);
            break;
        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }
}

Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
    // Validate in case of configured output
    if(output.total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
    }
    return validate_arguments_common(input1, input2, output);
}

Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_UNUSED(op);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
    return Status{};
}

/** The division operator */

void NEDivisionOperationKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
    configure_common(input1, input2, output);
    _function = configure_arithm_func<ArithmeticOperation::DIV>(input1, input2, output);
}

Status NEDivisionOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
    return NEArithmeticOperationKernel::validate_arguments(input1, input2, output);
}

Status NEDivisionOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
    return Status{};
}

/** The power operator */
void NEPowerOperationKernel::configure(const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
    configure_common(input1, input2, output);
    _function = configure_arithm_func<ArithmeticOperation::POWER>(input1, input2, output);
}

Status NEPowerOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
    return NEArithmeticOperationKernel::validate_arguments(input1, input2, output);
}

Status NEPowerOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
    return Status{};
}

/** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
void NEComparisonOperationKernel::configure(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, ITensorInfo *output)
{
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1, *input2, *output));
    configure_common(input1, input2, output);
    switch(op)
    {
        case ComparisonOperation::Equal:
            _function = configure_comp_func<ComparisonOperation::Equal>(input1, input2, output);
            break;
        case ComparisonOperation::NotEqual:
            _function = configure_comp_func<ComparisonOperation::NotEqual>(input1, input2, output);
            break;
        case ComparisonOperation::Greater:
            _function = configure_comp_func<ComparisonOperation::Greater>(input1, input2, output);
            break;
        case ComparisonOperation::GreaterEqual:
            _function = configure_comp_func<ComparisonOperation::GreaterEqual>(input1, input2, output);
            break;
        case ComparisonOperation::Less:
            _function = configure_comp_func<ComparisonOperation::Less>(input1, input2, output);
            break;
        case ComparisonOperation::LessEqual:
            _function = configure_comp_func<ComparisonOperation::LessEqual>(input1, input2, output);
            break;
        default:
            ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
    }
}

Status NEComparisonOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
    // Validate in case of configured output
    if(output.total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8);
    }
    return validate_arguments_common(input1, input2, output);
}

Status NEComparisonOperationKernel::validate(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
    ARM_COMPUTE_UNUSED(op);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
    return Status{};
}
} // namespace arm_compute