aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.cpp
blob: 2814c67f70542492a78bba98e5b8afb0bc90f287 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/*
 * Copyright (c) 2017-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEDirectConvolutionLayerOutputStageKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/Traits.h"

#include <arm_neon.h>
#include <cstddef>
#include <cstdint>

namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
                          const DirectConvolutionLayerOutputStageKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::S32, DataType::F32);

    if(bias != nullptr)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
        ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != input->dimension(get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL)));
        ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
    }

    if(input->data_type() == DataType::S32)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(output == nullptr, "In-place computation not allowed for quantized output");
    }

    // Checks performed when output is configured
    if((output != nullptr) && (output->total_size() != 0))
    {
        if(is_data_type_float(input->data_type()))
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
        }
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
    }
    else if(input->data_type() == DataType::S32)
    {
        // In case of quantized computation and unconfigured output, the output data type must be provided through DirectConvolutionLayerOutputStageKernelInfo
        ARM_COMPUTE_RETURN_ERROR_ON((info.output_data_type != DataType::QASYMM8) && (info.output_data_type != DataType::QASYMM8_SIGNED));
    }

    return Status{};
}

std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output,
                                                        const DirectConvolutionLayerOutputStageKernelInfo &info)
{
    ARM_COMPUTE_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);

    const DataType data_type = input->data_type();

    // Auto-initialize output output if required
    if(output != nullptr)
    {
        // Work out expected output data type
        const DataType output_dt = (data_type == DataType::S32) ? info.output_data_type : data_type;
        // Output tensor auto initialization if not yet initialized
        auto_init_if_empty(*output, input->clone()->set_data_type(output_dt));
    }

    bool         window_changed                    = false;
    unsigned int num_elems_processed_per_iteration = 16 / element_size_from_data_type(data_type);

    // Update processed elements when input is S32 (comes from quantization input)
    if(data_type == DataType::S32)
    {
        num_elems_processed_per_iteration = 16;
    }

    // Configure kernel window
    Window                 win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);

    if(output != nullptr && (output->total_size() != 0))
    {
        AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);

        if(bias == nullptr)
        {
            window_changed = update_window_and_padding(win, input_access, output_access);
        }
        else
        {
            AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
            window_changed = update_window_and_padding(win, input_access, output_access, bias_access);
        }

        output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
    }
    else
    {
        if(bias == nullptr)
        {
            window_changed = update_window_and_padding(win, input_access);
        }
        else
        {
            if(input->data_layout() == DataLayout::NCHW)
            {
                AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
                window_changed = update_window_and_padding(win, input_access, bias_access);
            }
            else
            {
                AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration);
                window_changed = update_window_and_padding(win, input_access, bias_access);
            }
        }

        input_access.set_valid_region(win, ValidRegion(Coordinates(), input->tensor_shape()));
    }

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}

template <typename T, bool has_bias>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
                  int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
    /** NEON vector tag type. */
    using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;

    ARM_COMPUTE_ERROR_ON(input->info()->data_layout() == DataLayout::UNKNOWN);
    ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
    ARM_COMPUTE_UNUSED(result_shift);
    ARM_COMPUTE_UNUSED(result_offset_after_shift);

    Iterator in(input, window);
    Iterator out(output, window);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        // Get bias and pointer to input
        const auto in_ptr = reinterpret_cast<const T *>(in.ptr());
        auto       v_in   = wrapper::vloadq(in_ptr);

        // Accumulate bias
        if(has_bias)
        {
            const auto vb = wrapper::vdup_n(*reinterpret_cast<const T *>(bias->ptr_to_element(Coordinates(id.z()))), ExactTagType{});
            v_in          = wrapper::vadd(v_in, vb);
        }

        const auto out_ptr = reinterpret_cast<T *>(out.ptr());
        wrapper::vstore(out_ptr, v_in);
    },
    in, out);
}

template <typename T, bool has_bias>
typename std::enable_if<arm_compute::utils::traits::is_floating_point<T>::value, void>::type
output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
                  int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
    ARM_COMPUTE_UNUSED(result_fixedpoint_multiplier);
    ARM_COMPUTE_UNUSED(result_shift);
    ARM_COMPUTE_UNUSED(result_offset_after_shift);

    Window window_bias = window;
    window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
    window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
    window_bias.set(3, Window::Dimension(0, 0, 0));

    Iterator in(input, window);
    Iterator bi(bias, window_bias);
    Iterator out(output, window);
    execute_window_loop(window, [&](const Coordinates &)
    {
        // Get bias and pointer to input
        const auto in_ptr = reinterpret_cast<const T *>(in.ptr());
        auto       v_in   = wrapper::vloadq(in_ptr);

        // Accumulate bias
        if(has_bias)
        {
            const auto bias_ptr = reinterpret_cast<T *>(bi.ptr());
            v_in                = wrapper::vadd(v_in, wrapper::vloadq(bias_ptr));
        }

        const auto out_ptr = reinterpret_cast<T *>(out.ptr());
        wrapper::vstore(out_ptr, v_in);

    },
    in, bi, out);
}

// Quantized case
template < typename TOut, bool has_bias, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
void output_stage_nchw(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
                       int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
    using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
    using TagType    = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;

    const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);

    const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
    const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});

    Iterator in(input, window);
    Iterator out(output, window);

    execute_window_loop(window, [&](const Coordinates & id)
    {
        // Get bias and pointer to input
        const auto  in_ptr = reinterpret_cast<int32_t *>(in.ptr());
        int32x4x4_t v_in =
        {
            {
                wrapper::vloadq(in_ptr),
                wrapper::vloadq(in_ptr + 4),
                wrapper::vloadq(in_ptr + 8),
                wrapper::vloadq(in_ptr + 12)
            }
        };

        // Accumulate bias
        if(has_bias)
        {
            const auto vb = wrapper::vdup_n(*reinterpret_cast<const int32_t *>(bias->ptr_to_element(Coordinates(id.z()))), TagType{});
            v_in =
            {
                {
                    wrapper::vadd(v_in.val[0], vb),
                    wrapper::vadd(v_in.val[1], vb),
                    wrapper::vadd(v_in.val[2], vb),
                    wrapper::vadd(v_in.val[3], vb)
                }
            };
        }

        const auto out_ptr = reinterpret_cast<TOut *>(out.ptr());
        wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max, false));
    },
    in, out);
}
template < typename TOut, bool has_bias, typename std::enable_if < std::is_same<TOut, uint8_t>::value || std::is_same<TOut, int8_t>::value, int >::type = 0 >
void output_stage_nhwc(ITensor *input, const ITensor *bias, const Window &window, ITensor *output,
                       int result_fixedpoint_multiplier, int result_shift, int result_offset_after_shift)
{
    using VectorType = typename wrapper::traits::neon_bitvector_t<TOut, wrapper::traits::BitWidth::W128>;
    using TagType    = typename wrapper::traits::neon_bitvector_tag_t<TOut, wrapper::traits::BitWidth::W128>;

    const int32x4_t result_offset_after_shift_s32 = vdupq_n_s32(result_offset_after_shift);

    const VectorType min = wrapper::vdup_n(std::numeric_limits<TOut>::lowest(), TagType{});
    const VectorType max = wrapper::vdup_n(std::numeric_limits<TOut>::max(), TagType{});

    Window window_bias = window;
    window_bias.set(Window::DimY, Window::Dimension(0, 0, 0));
    window_bias.set(Window::DimZ, Window::Dimension(0, 0, 0));
    window_bias.set(3, Window::Dimension(0, 0, 0));

    Iterator in(input, window);
    Iterator bi(bias, window_bias);

    Iterator out(output, window);
    execute_window_loop(window, [&](const Coordinates &)
    {
        // Get bias and pointer to input
        const auto  in_ptr = reinterpret_cast<int32_t *>(in.ptr());
        int32x4x4_t v_in =
        {
            {
                wrapper::vloadq(in_ptr),
                wrapper::vloadq(in_ptr + 4),
                wrapper::vloadq(in_ptr + 8),
                wrapper::vloadq(in_ptr + 12),
            }
        };

        // Accumulate bias
        if(has_bias)
        {
            const auto bias_ptr = reinterpret_cast<int32_t *>(bi.ptr());

            wrapper::vadd(v_in.val[0], wrapper::vloadq(bias_ptr));
            wrapper::vadd(v_in.val[1], wrapper::vloadq(bias_ptr + 4));
            wrapper::vadd(v_in.val[2], wrapper::vloadq(bias_ptr + 8));
            wrapper::vadd(v_in.val[3], wrapper::vloadq(bias_ptr + 12));
        }

        const auto out_ptr = reinterpret_cast<TOut *>(out.ptr());
        wrapper::vstore(out_ptr, finalize_quantization(v_in, result_fixedpoint_multiplier, result_shift, result_offset_after_shift_s32, min, max, false));
    },
    in, bi, out);
}
} // namespace

NEDirectConvolutionLayerOutputStageKernel::NEDirectConvolutionLayerOutputStageKernel()
    : _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_fixedpoint_multiplier(0), _result_shift(0), _result_offset_after_shift(0)
{
}

void NEDirectConvolutionLayerOutputStageKernel::configure(ITensor *input, const ITensor *bias, ITensor *output,
                                                          const DirectConvolutionLayerOutputStageKernelInfo &info)
{
    // Perform validation step
    ARM_COMPUTE_ERROR_ON_NULLPTR(input);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(), info));

    _func                         = nullptr;
    _bias                         = bias;
    _input                        = input;
    _output                       = (output != nullptr) ? output : input;
    _result_fixedpoint_multiplier = info.result_fixedpoint_multiplier;
    _result_shift                 = info.result_shift;
    _result_offset_after_shift    = info.result_offset_after_shift;

    // Configure kernel window
    auto win_config = validate_and_configure_window(input->info(), (bias == nullptr) ? nullptr : bias->info(), (output == nullptr) ? nullptr : output->info(), info);
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    INEKernel::configure(win_config.second);

    const bool has_bias          = bias != nullptr;
    const bool is_qasymm8_signed = (output != nullptr) ? is_data_type_quantized_asymmetric_signed(output->info()->data_type()) : false;

    // Set appropriate function
    if(input->info()->data_layout() == DataLayout::NCHW)
    {
        switch(input->info()->data_type())
        {
            case DataType::S32:
            {
                if(is_qasymm8_signed)
                {
                    _func = (has_bias) ? &output_stage_nchw<int8_t, true> : &output_stage_nchw<int8_t, false>;
                }
                else
                {
                    _func = (has_bias) ? &output_stage_nchw<uint8_t, true> : &output_stage_nchw<uint8_t, false>;
                }
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                _func = (has_bias) ? &output_stage_nchw<float16_t, true> : &output_stage_nchw<float16_t, false>;
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            case DataType::F32:
            {
                _func = (has_bias) ? &output_stage_nchw<float, true> : &output_stage_nchw<float, false>;
                break;
            }
            default:
            {
                ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
            }
        }
    }
    else
    {
        switch(input->info()->data_type())
        {
            case DataType::S32:
            {
                if(is_qasymm8_signed)
                {
                    _func = (has_bias) ? &output_stage_nhwc<int8_t, true> : &output_stage_nhwc<int8_t, false>;
                }
                else
                {
                    _func = (has_bias) ? &output_stage_nhwc<uint8_t, true> : &output_stage_nhwc<uint8_t, false>;
                }
                break;
            }
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
            case DataType::F16:
            {
                _func = (has_bias) ? &output_stage_nhwc<float16_t, true> : &output_stage_nhwc<float16_t, false>;
                break;
            }
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
            case DataType::F32:
            {
                _func = (has_bias) ? &output_stage_nhwc<float, true> : &output_stage_nhwc<float, false>;
                break;
            }
            default:
            {
                ARM_COMPUTE_ERROR("Unsupported combination of types among the inputs.");
            }
        }
    }
}

Status NEDirectConvolutionLayerOutputStageKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output,
                                                           const DirectConvolutionLayerOutputStageKernelInfo &info)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, info));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
                                                              bias == nullptr ? nullptr : bias->clone().get(),
                                                              output == nullptr ? nullptr : output->clone().get(),
                                                              info)
                                .first);

    return Status{};
}

void NEDirectConvolutionLayerOutputStageKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (*_func)(_input, _bias, window, _output, _result_fixedpoint_multiplier, _result_shift, _result_offset_after_shift);
}
} // namespace arm_compute