aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEDepthwiseConvolution3x3Kernel.cpp
blob: 5c4bd34e056a972ab5edb9c90121aaea15e99523 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEDepthwiseConvolution3x3Kernel.h"
#include "arm_compute/core/NEON/kernels/convolution/NEDirectConvolutionDetail.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

using namespace arm_compute;
using namespace arm_compute::detail;

NEDepthwiseConvolution3x3Kernel::NEDepthwiseConvolution3x3Kernel()
    : _border_size(0), _input(), _output(), _weights(), _conv_info()
{
}

BorderSize NEDepthwiseConvolution3x3Kernel::border_size() const
{
    return _border_size;
}

void NEDepthwiseConvolution3x3Kernel::configure(const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights);
    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != 3 || weights->info()->dimension(1) != 3);

    std::pair<unsigned int, unsigned int> expected_output = scaled_dimensions(input->info()->tensor_shape().x(), input->info()->tensor_shape().y(),
                                                                              weights->info()->tensor_shape().x(), weights->info()->tensor_shape().y(),
                                                                              conv_info);

    ARM_COMPUTE_UNUSED(expected_output);
    ARM_COMPUTE_ERROR_ON(expected_output.first != output->info()->tensor_shape().x());
    ARM_COMPUTE_ERROR_ON(expected_output.second != output->info()->tensor_shape().y());

    _input                           = input;
    _output                          = output;
    _weights                         = weights;
    _conv_info                       = conv_info;
    const unsigned int conv_stride_x = conv_info.stride().first;
    const unsigned int conv_pad_x    = conv_info.pad().first;
    const unsigned int conv_pad_y    = conv_info.pad().second;

    ARM_COMPUTE_ERROR_ON(conv_stride_x < 1 || conv_stride_x > 3);

    const unsigned int num_elems_written_per_iteration = 16 >> conv_stride_x;
    _border_size                                       = BorderSize(conv_pad_y, conv_pad_x);

    // Configure kernel window
    Window win = calculate_max_window(*output->info(), Steps(num_elems_written_per_iteration));

    AccessWindowStatic     input_access(input->info(), -conv_pad_x, -conv_pad_y, input->info()->dimension(0) + _border_size.right, input->info()->dimension(1) + _border_size.bottom);
    AccessWindowStatic     weights_access(weights->info(), 0, 0, weights->info()->dimension(0), weights->info()->dimension(1));
    AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration);

    update_window_and_padding(win, input_access, weights_access, output_access);
    output_access.set_valid_region(win, ValidRegion(Coordinates(), output->info()->tensor_shape()));

    INEKernel::configure(win);
}

template <unsigned int stridex>
class convolver_3x3
{
public:
    static void convolve(const Window &window, unsigned int num_elems_written_per_iteration,
                         const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info)
    {
        const int          input_stride_x  = input->info()->strides_in_bytes().x();
        const int          input_stride_y  = input->info()->strides_in_bytes().y();
        const int          output_stride_y = output->info()->strides_in_bytes().y();
        const int          kernel_stride_y = weights->info()->strides_in_bytes().y();
        const int          kernel_stride_z = weights->info()->strides_in_bytes().z();
        const int          output_w        = output->info()->dimension(0);
        const int          output_h        = output->info()->dimension(1);
        const int          delta_input     = get_input_num_elems_processed<stridex>(num_elems_written_per_iteration);
        const unsigned int conv_stride_y   = std::get<1>(conv_info.stride());
        const unsigned int conv_pad_x      = std::get<0>(conv_info.pad());
        const unsigned int conv_pad_y      = std::get<1>(conv_info.pad());

        // setup output window for the iterator
        Window window_out = window;
        window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
        window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));

        // setup input window for the iterator
        Window window_in = window;
        // we just want execute_window_loop to iterate over the dimensions > 2, so we set the first 2 dimensions to 0
        window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
        window_in.set(Window::DimY, Window::Dimension(0, 0, 0));

        Window window_k = calculate_max_window(*weights->info(), Steps(1u));

        Iterator in(input, window_in);
        Iterator out(output, window_out);
        Iterator w(weights, window_k);

        const uint8_t *weights_ptr = w.ptr();

        execute_window_loop(window_out, [&](const Coordinates & id)
        {
            const uint8_t *input_ptr = in.ptr() - conv_pad_x * input_stride_x - conv_pad_y * input_stride_y;
            int            ih        = 0;
            int            oh        = 0;

            const uint8_t *ptr_weights_base = weights_ptr + id.z() * kernel_stride_z;
            const auto     ptr_weights_r0   = reinterpret_cast<const float *>(ptr_weights_base);
            const auto     ptr_weights_r1   = reinterpret_cast<const float *>(ptr_weights_base + kernel_stride_y);
            const auto     ptr_weights_r2   = reinterpret_cast<const float *>(ptr_weights_base + kernel_stride_y * 2);
            const auto     vw_r0            = load_matrix_row(ptr_weights_r0);
            const auto     vw_r1            = load_matrix_row(ptr_weights_r1);
            const auto     vw_r2            = load_matrix_row(ptr_weights_r2);

            for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
            {
                auto in_top = reinterpret_cast<const float *>(input_ptr + (ih + 0) * input_stride_y);
                auto in_mid = reinterpret_cast<const float *>(input_ptr + (ih + 1) * input_stride_y);
                auto in_low = reinterpret_cast<const float *>(input_ptr + (ih + 2) * input_stride_y);
                auto p_out  = reinterpret_cast<float *>(out.ptr() + oh * output_stride_y);

                for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
                    in_top += delta_input, in_mid += delta_input, in_low += delta_input, p_out += num_elems_written_per_iteration)
                {
                    auto vres = convolve_3x3<stridex>(in_top, in_mid, in_low, vw_r0, vw_r1, vw_r2, 0);
                    store_results<stridex>(p_out, vres);
                }
            }
        },
        in, out);
    }
};

void NEDepthwiseConvolution3x3Kernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_UNUSED(info);

    const unsigned int conv_stride_x                   = _conv_info.stride().first;
    const unsigned int num_elems_written_per_iteration = 16 >> conv_stride_x;

    switch(conv_stride_x)
    {
        case 1:
            convolver_3x3<1>::convolve(window, num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
            break;
        case 2:
            convolver_3x3<2>::convolve(window, num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
            break;
        case 3:
            convolver_3x3<3>::convolve(window, num_elems_written_per_iteration, _input, _weights, _output, _conv_info);
            break;
        default:
            ARM_COMPUTE_ERROR("Not implemented");
    }
}