aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEBatchNormalizationLayerKernel.cpp
blob: 9a216aecde28614783a5548d4ff36c8d5aedeb66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEBatchNormalizationLayerKernel.h"

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

using namespace arm_compute;

NEBatchNormalizationLayerKernel::NEBatchNormalizationLayerKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _gamma(nullptr), _beta(nullptr), _epsilon()
{
}

void batch_normalization_q8(const ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window)
{
    Iterator input(in, window);
    Iterator output(out, window);

    // Hold information about the current feature map we are iterating.
    // Only compute denominator and NEON vectors once per feature map.
    int slice = -1;

    int        fixed_point_position = in->info()->fixed_point_position();
    const auto input_mean           = reinterpret_cast<const qint8_t *>(mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var            = reinterpret_cast<const qint8_t *>(var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma          = reinterpret_cast<const qint8_t *>(gamma->ptr_to_element(Coordinates(0, 0)));
    const auto input_beta           = reinterpret_cast<const qint8_t *>(beta->ptr_to_element(Coordinates(0, 0)));

    qint8x16_t       mean_vec    = vdupq_n_qs8(0);
    qint8x16_t       var_vec     = vdupq_n_qs8(0);
    qint8x16_t       gamma_vec   = vdupq_n_qs8(0);
    qint8x16_t       beta_vec    = vdupq_n_qs8(0);
    qint8x16_t       denominator = vdupq_n_qs8(0);
    const qint8x16_t epsilon_vec = vdupq_n_qs8(scvt_qs8_f32(epsilon, fixed_point_position));
    execute_window_loop(window, [&](const Coordinates & id)
    {
        if(slice != id.z())
        {
            // Conctruct vectors
            mean_vec  = vdupq_n_qs8(*(input_mean + id.z()));
            var_vec   = vdupq_n_qs8(*(input_var + id.z()));
            gamma_vec = vdupq_n_qs8(*(input_gamma + id.z()));
            beta_vec  = vdupq_n_qs8(*(input_beta + id.z()));

            // Calculate denominator
            denominator = vqinvsqrtq_qs8(vqaddq_qs8(var_vec, epsilon_vec), fixed_point_position);
            slice       = id.z();
        }

        // Calculate x bar and store results
        const qint8x16_t numerator = vqsubq_qs8(vld1q_qs8(reinterpret_cast<const qint8_t *>(input.ptr())), mean_vec);
        const qint8x16_t x_bar     = vqmulq_qs8(numerator, denominator, fixed_point_position);
        vst1q_qs8(reinterpret_cast<qint8_t *>(output.ptr()), vqmlaq_qs8(beta_vec, x_bar, gamma_vec, fixed_point_position));
    },
    input, output);
}

void batch_normalization_fp32(const ITensor *in, ITensor *out, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon, const Window &window)
{
    Iterator input(in, window);
    Iterator output(out, window);

    // Hold information about the current feature map we are iterating.
    // Only compute denominator and NEON vectors once per feature map.
    int slice = -1;

    const auto input_mean  = reinterpret_cast<const float *>(mean->ptr_to_element(Coordinates(0, 0)));
    const auto input_var   = reinterpret_cast<const float *>(var->ptr_to_element(Coordinates(0, 0)));
    const auto input_gamma = reinterpret_cast<const float *>(gamma->ptr_to_element(Coordinates(0, 0)));
    const auto input_beta  = reinterpret_cast<const float *>(beta->ptr_to_element(Coordinates(0, 0)));

    float32x4_t       mean_vec    = vdupq_n_f32(0.0);
    float32x4_t       var_vec     = vdupq_n_f32(0.0);
    float32x4_t       gamma_vec   = vdupq_n_f32(0.0);
    float32x4_t       beta_vec    = vdupq_n_f32(0.0);
    float32x4_t       denominator = vdupq_n_f32(0.0);
    const float32x4_t epsilon_vec = vdupq_n_f32(epsilon);
    execute_window_loop(window, [&](const Coordinates & id)
    {
        if(slice != id.z())
        {
            // Conctruct vectors
            mean_vec  = vdupq_n_f32(*(input_mean + id.z()));
            var_vec   = vdupq_n_f32(*(input_var + id.z()));
            gamma_vec = vdupq_n_f32(*(input_gamma + id.z()));
            beta_vec  = vdupq_n_f32(*(input_beta + id.z()));

            // Calculate denominator
            denominator = vinvsqrtq_f32(vaddq_f32(var_vec, epsilon_vec));
            slice       = id.z();
        }

        // Calculate x bar and store results
        const float32x4_t numerator = vsubq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), mean_vec);
        const float32x4_t x_bar     = vmulq_f32(numerator, denominator);
        vst1q_f32(reinterpret_cast<float *>(output.ptr()), vmlaq_f32(beta_vec, x_bar, gamma_vec));
    },
    input, output);
}

void NEBatchNormalizationLayerKernel::configure(const ITensor *input, ITensor *output, const ITensor *mean, const ITensor *var, const ITensor *beta, const ITensor *gamma, float epsilon)
{
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mean, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(var, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(gamma, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(beta, 1, DataType::QS8, DataType::F32);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, output);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, var);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);

    _input   = input;
    _output  = output;
    _mean    = mean;
    _var     = var;
    _gamma   = gamma;
    _beta    = beta;
    _epsilon = epsilon;

    unsigned int num_elems_processed_per_iteration = 0;

    switch(input->info()->data_type())
    {
        case DataType::QS8:
            _func                             = &batch_normalization_q8;
            num_elems_processed_per_iteration = 16;
            break;
        case DataType::F32:
            _func                             = &batch_normalization_fp32;
            num_elems_processed_per_iteration = 4;
            break;
        default:
            ARM_COMPUTE_ERROR("Element size not supported");
            break;
    }

    Window win = calculate_max_window(*input->info(), Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal input_access(input->info(), 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(output->info(), 0, num_elems_processed_per_iteration);

    update_window_and_padding(win, input_access, output_access);

    output_access.set_valid_region(win, input->info()->valid_region());

    INEKernel::configure(win);
}

void NEBatchNormalizationLayerKernel::run(const Window &window)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (*_func)(_input, _output, _mean, _var, _beta, _gamma, _epsilon, window);
}