aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEBatchConcatenateLayerKernel.cpp
blob: 65789160f6cd6f2e4a531bc0fc6f4d9b54b6daf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
 * Copyright (c) 2019-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEBatchConcatenateLayerKernel.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"

namespace arm_compute
{
namespace
{
template <typename T>
void batch_concat(const ITensor *in, ITensor *out, unsigned int batch_offset, const Window &window)
{
    // Offset input
    uint8_t *input_ptr = in->buffer() + in->info()->offset_first_element_in_bytes();

    // Offset output
    uint8_t *output_ptr = out->buffer() + out->info()->offset_first_element_in_bytes() + batch_offset * out->info()->strides_in_bytes()[3];

    const auto window_start_x = static_cast<int>(window.x().start());
    const auto window_end_x   = static_cast<int>(window.x().end());
    const int  window_step_x  = 16 / out->info()->element_size();

    Window win{ window };
    win.set(Window::DimX, Window::Dimension(0, 1, 1));
    win.set(3, Window::Dimension(0, in->info()->tensor_shape()[3], 1));

    Iterator input(in, win);
    Iterator output(out, win);

    const DataType                dt           = in->info()->data_type();
    const UniformQuantizationInfo input_qinfo  = in->info()->quantization_info().uniform();
    const UniformQuantizationInfo output_qinfo = out->info()->quantization_info().uniform();
    if(dt == DataType::QASYMM8 && input_qinfo != output_qinfo)
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto in_ptr  = reinterpret_cast<const uint8_t *>(input_ptr + input.offset());
            const auto out_ptr = reinterpret_cast<uint8_t *>(output_ptr + output.offset());

            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                wrapper::vstore(out_ptr, vquantize(vdequantize(wrapper::vloadq(in_ptr), input_qinfo), output_qinfo));
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                *(out_ptr + x) = quantize_qasymm8(dequantize_qasymm8(*(in_ptr + x), input_qinfo), output_qinfo);
            }
        },
        input, output);
    }
    else if(dt == DataType::QASYMM8_SIGNED && input_qinfo != output_qinfo)
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto in_ptr  = reinterpret_cast<const int8_t *>(input_ptr + input.offset());
            const auto out_ptr = reinterpret_cast<int8_t *>(output_ptr + output.offset());
            int        x       = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                wrapper::vstore(out_ptr, vquantize_signed(vdequantize(wrapper::vloadq(in_ptr), input_qinfo), output_qinfo));
            }
            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                *(out_ptr + x) = quantize_qasymm8_signed(dequantize_qasymm8_signed(*(in_ptr + x), input_qinfo), output_qinfo);
            }
        },
        input, output);
    }
    else
    {
        execute_window_loop(win, [&](const Coordinates &)
        {
            const auto in_ptr  = reinterpret_cast<const T *>(input_ptr + input.offset());
            const auto out_ptr = reinterpret_cast<T *>(output_ptr + output.offset());

            int x = window_start_x;
            for(; x <= (window_end_x - window_step_x); x += window_step_x)
            {
                wrapper::vstore(out_ptr + x, wrapper::vloadq(in_ptr + x));
            }

            // Compute left-over elements
            for(; x < window_end_x; ++x)
            {
                *(out_ptr + x) = *(in_ptr + x);
            }
        },
        input, output);
    }
}

Status validate_arguments(const ITensorInfo *input, unsigned int batch_offset, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
    //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use NEON FP16 instructions.
    ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);

    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimX) != output->dimension(Window::DimX));
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimY) != output->dimension(Window::DimY));
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(Window::DimZ) != output->dimension(Window::DimZ));
    ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(3) + batch_offset > output->dimension(3));
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(4, input, output);

    return Status{};
}
} // namespace

NEBatchConcatenateLayerKernel::NEBatchConcatenateLayerKernel()
    : _func(nullptr), _input(nullptr), _output(nullptr), _batch_offset(0)
{
}

void NEBatchConcatenateLayerKernel::configure(const ITensor *input, unsigned int batch_offset, ITensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), batch_offset, output->info()));

    _func         = nullptr;
    _input        = input;
    _output       = output;
    _batch_offset = batch_offset;

    switch(input->info()->data_type())
    {
        case DataType::S8:
        case DataType::U8:
        case DataType::QASYMM8:
        case DataType::QASYMM8_SIGNED:
            _func = &batch_concat<uint8_t>;
            break;
        case DataType::S16:
        case DataType::U16:
        case DataType::F16:
            _func = &batch_concat<uint16_t>;
            break;
        case DataType::S32:
        case DataType::U32:
        case DataType::F32:
            _func = &batch_concat<uint32_t>;
            break;
        default:
            ARM_COMPUTE_ERROR("Unsupported data type.");
    }

    // Configure kernel window
    Window      win = calculate_max_window(*output->info(), Steps());
    Coordinates coord;
    coord.set_num_dimensions(output->info()->num_dimensions());
    output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
    INEKernel::configure(win);
}

Status NEBatchConcatenateLayerKernel::validate(const arm_compute::ITensorInfo *input,
                                               unsigned int                    batch_offset,
                                               const arm_compute::ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, batch_offset, output));
    return Status{};
}

void NEBatchConcatenateLayerKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (*_func)(_input, _output, _batch_offset, window);
}
} // namespace arm_compute