aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp
blob: 0695c94927b1903fa9885513fba31921e2d5a8f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
 * Copyright (c) 2016-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/NEON/kernels/NEArithmeticSubtractionKernel.h"

#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"

#include <algorithm>
#include <arm_neon.h>
#include <cstdint>
#include <map>
#include <string>

using namespace arm_compute;

namespace arm_compute
{
class Coordinates;
} // namespace arm_compute

namespace
{
constexpr unsigned int num_elems_processed_per_iteration = 16;

void sub_wrap_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t ta1 = vld1q_u8(input1.ptr());
        const uint8x16_t ta2 = vld1q_u8(input2.ptr());

        vst1q_u8(output.ptr(), vsubq_u8(ta1, ta2));
    },
    input1, input2, output);
}

void sub_saturate_U8_U8_U8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t ta1 = vld1q_u8(input1.ptr());
        const uint8x16_t ta2 = vld1q_u8(input2.ptr());

        vst1q_u8(output.ptr(), vqsubq_u8(ta1, ta2));
    },
    input1, input2, output);
}

void sub_saturate_QAYSMM8_QAYSMM8_QAYSMM8(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
    const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
    const UniformQuantizationInfo oq_info  = out->info()->quantization_info().uniform();

    execute_window_loop(window, [&](const Coordinates &)
    {
        const float32x4x4_t ta1 = vdequantize(vld1q_u8(reinterpret_cast<const qasymm8_t *>(input1.ptr())), iq1_info);
        const float32x4x4_t ta2 = vdequantize(vld1q_u8(reinterpret_cast<const qasymm8_t *>(input2.ptr())), iq2_info);

        const float32x4x4_t ta3 =
        {
            {
                vsubq_f32(ta1.val[0], ta2.val[0]),
                vsubq_f32(ta1.val[1], ta2.val[1]),
                vsubq_f32(ta1.val[2], ta2.val[2]),
                vsubq_f32(ta1.val[3], ta2.val[3]),
            }
        };

        const uint8x16_t result = vquantize(ta3, oq_info);

        vst1q_u8(reinterpret_cast<qasymm8_t *>(output.ptr()), result);
    },
    input1, input2, output);
}

void sub_saturate_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
    const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
    const UniformQuantizationInfo oq_info  = out->info()->quantization_info().uniform();

    execute_window_loop(window, [&](const Coordinates &)
    {
        const float32x4x4_t ta1 = vdequantize(vld1q_s8(reinterpret_cast<const qasymm8_signed_t *>(input1.ptr())), iq1_info);
        const float32x4x4_t ta2 = vdequantize(vld1q_s8(reinterpret_cast<const qasymm8_signed_t *>(input2.ptr())), iq2_info);

        const float32x4x4_t ta3 =
        {
            {
                vsubq_f32(ta1.val[0], ta2.val[0]),
                vsubq_f32(ta1.val[1], ta2.val[1]),
                vsubq_f32(ta1.val[2], ta2.val[2]),
                vsubq_f32(ta1.val[3], ta2.val[3]),
            }
        };

        const int8x16_t result = vquantize_signed(ta3, oq_info);

        vst1q_s8(reinterpret_cast<qasymm8_signed_t *>(output.ptr()), result);
    },
    input1, input2, output);
}

void sub_wrap_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const int16x8x2_t ta1 = vld2q_s16(reinterpret_cast<const int16_t *>(input1.ptr()));
        const int16x8x2_t ta2 = vld2q_s16(reinterpret_cast<const int16_t *>(input2.ptr()));

        const int16x8x2_t ta3 =
        {
            {
                vsubq_s16(ta1.val[0], ta2.val[0]),
                vsubq_s16(ta1.val[1], ta2.val[1])
            }
        };

        vst2q_s16(reinterpret_cast<int16_t *>(output.ptr()), ta3);
    },
    input1, input2, output);
}

void sub_saturate_S16_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const int16x8x2_t ta1 = vld2q_s16(reinterpret_cast<const int16_t *>(input1.ptr()));
        const int16x8x2_t ta2 = vld2q_s16(reinterpret_cast<const int16_t *>(input2.ptr()));

        const int16x8x2_t ta3 =
        {
            {
                vqsubq_s16(ta1.val[0], ta2.val[0]),
                vqsubq_s16(ta1.val[1], ta2.val[1])
            }
        };

        vst2q_s16(reinterpret_cast<int16_t *>(output.ptr()), ta3);
    },
    input1, input2, output);
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
inline float16x8x2_t vsub2q_f16(const float16x8x2_t &a, const float16x8x2_t &b)
{
    const float16x8x2_t res =
    {
        {
            vsubq_f16(a.val[0], b.val[0]),
            vsubq_f16(a.val[1], b.val[1])
        }
    };

    return res;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */

void sub_F16_F16_F16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const float16x8x2_t a = vld2q_f16(reinterpret_cast<const float16_t *>(input1.ptr()));
        const float16x8x2_t b = vld2q_f16(reinterpret_cast<const float16_t *>(input2.ptr()));

        vst2q_f16(reinterpret_cast<float16_t *>(output.ptr()), vsub2q_f16(a, b));
    },
    input1, input2, output);
#else  /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
    ARM_COMPUTE_UNUSED(in1);
    ARM_COMPUTE_UNUSED(in2);
    ARM_COMPUTE_UNUSED(out);
    ARM_COMPUTE_UNUSED(window);
    ARM_COMPUTE_ERROR("Not supported, recompile the library with arch=arm64-v8.2-a");
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
}

void sub_F32_F32_F32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const float32x4x4_t ta1 = vld4q_f32(reinterpret_cast<const float *>(input1.ptr()));
        const float32x4x4_t ta2 = vld4q_f32(reinterpret_cast<const float *>(input2.ptr()));

        const float32x4x4_t ta3 =
        {
            {
                vsubq_f32(ta1.val[0], ta2.val[0]),
                vsubq_f32(ta1.val[1], ta2.val[1]),
                vsubq_f32(ta1.val[2], ta2.val[2]),
                vsubq_f32(ta1.val[3], ta2.val[3]),
            }
        };

        vst4q_f32(reinterpret_cast<float *>(output.ptr()), ta3);
    },
    input1, input2, output);
}
void sub_wrap_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t bv_0 = vld1q_u8(input2.ptr());
        int16x8_t        a1_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input1.ptr()));
        int16x8_t        a2_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input1.ptr()) + 8);

        a1_0 = vsubq_s16(a1_0, vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))));
        a2_0 = vsubq_s16(a2_0, vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))));

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

void sub_saturate_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t bv_0 = vld1q_u8(input2.ptr());
        int16x8_t        a1_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input1.ptr()));
        int16x8_t        a2_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input1.ptr()) + 8);

        a1_0 = vqsubq_s16(a1_0, vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))));
        a2_0 = vqsubq_s16(a2_0, vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))));

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

void sub_wrap_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t bv_0 = vld1q_u8(input1.ptr());
        int16x8_t        a1_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input2.ptr()));
        int16x8_t        a2_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input2.ptr()) + 8);

        a1_0 = vsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))), a1_0);
        a2_0 = vsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))), a2_0);

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

void sub_saturate_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t bv_0 = vld1q_u8(input1.ptr());
        int16x8_t        a1_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input2.ptr()));
        int16x8_t        a2_0 = vld1q_s16(reinterpret_cast<const int16_t *>(input2.ptr()) + 8);

        a1_0 = vqsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))), a1_0);
        a2_0 = vqsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))), a2_0);

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

void sub_wrap_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t av_0 = vld1q_u8(input1.ptr());
        const uint8x16_t bv_0 = vld1q_u8(input2.ptr());

        const int16x8_t a1_0 = vsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(av_0))),
                                         vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))));
        const int16x8_t a2_0 = vsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(av_0))),
                                         vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))));

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

void sub_saturate_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
    Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
    Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
    Iterator output(out, window);

    execute_window_loop(window, [&](const Coordinates &)
    {
        const uint8x16_t av_0 = vld1q_u8(input1.ptr());
        const uint8x16_t bv_0 = vld1q_u8(input2.ptr());

        const int16x8_t a1_0 = vqsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(av_0))),
                                          vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(bv_0))));
        const int16x8_t a2_0 = vqsubq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(av_0))),
                                          vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(bv_0))));

        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()), a1_0);
        vst1q_s16(reinterpret_cast<int16_t *>(output.ptr()) + 8, a2_0);
    },
    input1, input2, output);
}

inline Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy)
{
    ARM_COMPUTE_UNUSED(policy);
    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16, DataType::F32);

    const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
    ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(
        !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
        && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8)
        && !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED)
        && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
        && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16)
        && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8)
        && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16)
        && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32)
        && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16),
        "You called subtract with the wrong image formats");

    ARM_COMPUTE_RETURN_ERROR_ON_MSG(
        input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && policy == ConvertPolicy::WRAP
        && input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && policy == ConvertPolicy::WRAP,
        "Convert policy cannot be WRAP if datatype is QASYMM8 or QASYMM8_SIGNED");

    // Validate in case of configured output
    if(output.total_size() > 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MSG(
            !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8)
            && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8)
            && !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && output.data_type() == DataType::QASYMM8_SIGNED)
            && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
            && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
            && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
            && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
            && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32)
            && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16),
            "You called subtract with the wrong image formats");

        ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
                                        "Wrong shape for output");
    }
    return Status{};
}

inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo &input1, ITensorInfo &input2, ITensorInfo &output)
{
    const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(input1, input2);
    const TensorShape &out_shape    = broadcast_pair.first;
    const ValidRegion &valid_region = broadcast_pair.second;

    // Auto initialize output if not initialized
    {
        set_shape_if_empty(output, out_shape);

        if(input1.data_type() == DataType::S16 || input2.data_type() == DataType::S16)
        {
            set_format_if_unknown(output, Format::S16);
        }
        else if(input1.data_type() == DataType::F16 || input2.data_type() == DataType::F16)
        {
            set_format_if_unknown(output, Format::F16);
        }
        else if(input1.data_type() == DataType::F32 || input2.data_type() == DataType::F32)
        {
            set_format_if_unknown(output, Format::F32);
        }
        else if(input1.data_type() == DataType::QASYMM8 || input2.data_type() == DataType::QASYMM8)
        {
            set_data_type_if_unknown(output, DataType::QASYMM8);
        }
        else if(input1.data_type() == DataType::QASYMM8_SIGNED || input2.data_type() == DataType::QASYMM8_SIGNED)
        {
            set_data_type_if_unknown(output, DataType::QASYMM8_SIGNED);
        }
    }

    Window win        = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
    Window win_input1 = win.broadcast_if_dimension_le_one(input1);
    Window win_input2 = win.broadcast_if_dimension_le_one(input2);

    AccessWindowHorizontal input1_access(&input1, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal input2_access(&input2, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(&output, 0, num_elems_processed_per_iteration);

    bool window_changed = update_window_and_padding(win_input1, input1_access)
                          || update_window_and_padding(win_input2, input2_access)
                          || update_window_and_padding(win, output_access);

    output_access.set_valid_region(win, valid_region);

    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
    return std::make_pair(err, win);
}
} // namespace

NEArithmeticSubtractionKernel::NEArithmeticSubtractionKernel()
    : _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}

void NEArithmeticSubtractionKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), policy));

    // Configure kernel window
    auto win_config = validate_and_configure_window(*input1->info(), *input2->info(), *output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);

    static std::map<std::string, NEArithmeticSubtractionKernel::SubFunction *> map_function =
    {
        { "sub_wrap_U8_U8_U8", &sub_wrap_U8_U8_U8 },
        { "sub_wrap_U8_U8_S16", &sub_wrap_U8_U8_S16 },
        { "sub_saturate_U8_U8_U8", &sub_saturate_U8_U8_U8 },
        { "sub_saturate_U8_U8_S16", &sub_saturate_U8_U8_S16 },
        { "sub_saturate_QASYMM8_QASYMM8_QASYMM8", &sub_saturate_QAYSMM8_QAYSMM8_QAYSMM8 },
        { "sub_saturate_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED", &sub_saturate_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED },
        { "sub_wrap_U8_S16_S16", &sub_wrap_U8_S16_S16 },
        { "sub_wrap_S16_U8_S16", &sub_wrap_S16_U8_S16 },
        { "sub_saturate_U8_S16_S16", &sub_saturate_U8_S16_S16 },
        { "sub_saturate_S16_U8_S16", &sub_saturate_S16_U8_S16 },
        { "sub_wrap_S16_S16_S16", &sub_wrap_S16_S16_S16 },
        { "sub_saturate_S16_S16_S16", &sub_saturate_S16_S16_S16 },
        { "sub_wrap_F32_F32_F32", &sub_F32_F32_F32 },
        { "sub_saturate_F32_F32_F32", &sub_F32_F32_F32 },
        { "sub_wrap_F16_F16_F16", &sub_F16_F16_F16 },
        { "sub_saturate_F16_F16_F16", &sub_F16_F16_F16 },
    };

    _input1 = input1;
    _input2 = input2;
    _output = output;

    std::string function_to_call("sub_");
    function_to_call += policy == ConvertPolicy::WRAP ? "wrap_" : "saturate_";
    function_to_call += string_from_data_type(input1->info()->data_type()) + "_";
    function_to_call += string_from_data_type(input2->info()->data_type()) + "_";
    function_to_call += string_from_data_type(output->info()->data_type());

    auto it = map_function.find(function_to_call);

    if(it != map_function.end())
    {
        _func = it->second;
    }

    INEKernel::configure(win_config.second);
}

Status NEArithmeticSubtractionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
{
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);

    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(*input1->clone(), *input2->clone(), *output->clone()).first);

    return Status{};
}

void NEArithmeticSubtractionKernel::run(const Window &window, const ThreadInfo &info)
{
    ARM_COMPUTE_UNUSED(info);
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
    ARM_COMPUTE_ERROR_ON(_func == nullptr);

    (*_func)(_input1, _input2, _output, window);
}

BorderSize NEArithmeticSubtractionKernel::border_size() const
{
    const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
    const unsigned int border        = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
    return BorderSize{ 0, border, 0, 0 };
}