aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/NEMath.inl
blob: a5aba0bf23dd1477bbbd4d88cc7ccc2b60f46fce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
/*
 * Copyright (c) 2016-2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "src/core/utils/Math.h"
#include "support/ToolchainSupport.h"

#include <cmath>
#include <limits>

namespace arm_compute
{
/** Logarithm polynomial coefficients */
const std::array<float32x4_t, 8> log_tab = {{
    vdupq_n_f32(-2.29561495781f),
    vdupq_n_f32(-2.47071170807f),
    vdupq_n_f32(-5.68692588806f),
    vdupq_n_f32(-0.165253549814f),
    vdupq_n_f32(5.17591238022f),
    vdupq_n_f32(0.844007015228f),
    vdupq_n_f32(4.58445882797f),
    vdupq_n_f32(0.0141278216615f),
}};

/** Sin polynomial coefficients */
constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3)
constexpr float te_sin_coeff3 = 0.05f;           // 1/(4*5)
constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7)
constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)

#ifndef DOXYGEN_SKIP_THIS
inline float32x4_t prefer_vfmaq_f32(float32x4_t a, float32x4_t b, float32x4_t c)
{
#if __ARM_FEATURE_FMA
    return vfmaq_f32(a, b, c);
#else  // __ARM_FEATURE_FMA
    return vmlaq_f32(a, b, c);
#endif // __ARM_FEATURE_FMA
}

inline float32x4_t vfloorq_f32(float32x4_t val)
{
    static const float32x4_t CONST_1 = vdupq_n_f32(1.f);

    const int32x4_t   z = vcvtq_s32_f32(val);
    const float32x4_t r = vcvtq_f32_s32(z);

    return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r);
}

inline float32x4_t vroundq_rte_f32(float32x4_t val)
{
#ifdef __aarch64__
    return vrndnq_f32(val);
#else  // __aarch64__
    static const float32x4_t CONST_HALF_FLOAT = vdupq_n_f32(0.5f);
    static const float32x4_t CONST_1_FLOAT    = vdupq_n_f32(1.f);
    static const int32x4_t   CONST_1_INT      = vdupq_n_s32(1);
    const float32x4_t        floor_val        = vfloorq_f32(val);
    const float32x4_t        diff             = vsubq_f32(val, floor_val);
    const float32x4_t        fp32_upper_limit =
        vreinterpretq_f32_u32(vdupq_n_u32(0x4B000000)); // 0x4B000000 = (23U + 127U) << 23U

    /*
    * 1. Select the floor value when (diff<0.5 || (diff==0.5 && floor_val%2==0).
    *    This condition is checked by vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT) ,vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT) , vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT),CONST_1_INT))))
    *
    * 2. In case the input value (val) is out of signed int32 range, then simple use the input value as the rounded value
    *    Because:
    *    in this case converting to int32 would saturate
    *    If the input float value is >= 2^23 * 1.00... 23 Zeros ..0  then the rounded value is exactly equal to the input value.
    *    Because:
    *    in IEEE single precision floating point representation the fraction part is 23 bit, so if exponent is 23 it means the fraction part = 0 as any digits after decimal point are truncated.
    *    Hence, rounding has no effect:
    *    Threshold upper limit with format |S|E(8bits)|   Fraction(23bits)     | = (23 + 127) << 23 (assuming positive sign): Adding 127, because 127 represents the actual zero in this format.
    */

    float32x4_t rounded_val = vbslq_f32(
        vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT),
                  vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT),
                            vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT), CONST_1_INT)))),
        floor_val, vaddq_f32(floor_val, CONST_1_FLOAT));

    float32x4_t result = vbslq_f32(vcgeq_f32(vabsq_f32(val), fp32_upper_limit), val, rounded_val);

    return result;
#endif // __aarch64__
}

inline float32x2_t vinvsqrt_f32(float32x2_t x)
{
    float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);

    return sqrt_reciprocal;
}

inline float32x4_t vinvsqrtq_f32(float32x4_t x)
{
    float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
    sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);

    return sqrt_reciprocal;
}

inline float32x2_t vinv_f32(float32x2_t x)
{
    float32x2_t recip = vrecpe_f32(x);
    recip             = vmul_f32(vrecps_f32(x, recip), recip);
    recip             = vmul_f32(vrecps_f32(x, recip), recip);
    return recip;
}

inline float32x4_t vinvq_f32(float32x4_t x)
{
    float32x4_t recip = vrecpeq_f32(x);
    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
    return recip;
}

inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
{
    float32x4_t A   = vmlaq_f32(coeffs[0], coeffs[4], x);
    float32x4_t B   = vmlaq_f32(coeffs[2], coeffs[6], x);
    float32x4_t C   = vmlaq_f32(coeffs[1], coeffs[5], x);
    float32x4_t D   = vmlaq_f32(coeffs[3], coeffs[7], x);
    float32x4_t x2  = vmulq_f32(x, x);
    float32x4_t x4  = vmulq_f32(x2, x2);
    float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
    return res;
}

static const uint32_t exp_f32_coeff[] = {
    0x3f7ffff6, // x^1: 0x1.ffffecp-1f
    0x3efffedb, // x^2: 0x1.fffdb6p-2f
    0x3e2aaf33, // x^3: 0x1.555e66p-3f
    0x3d2b9f17, // x^4: 0x1.573e2ep-5f
    0x3c072010, // x^5: 0x1.0e4020p-7f
};

inline float32x4_t vexpq_f32(float32x4_t x)
{
    const auto c1 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[0]));
    const auto c2 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[1]));
    const auto c3 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[2]));
    const auto c4 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[3]));
    const auto c5 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[4]));

    const auto shift   = vreinterpretq_f32_u32(vdupq_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
    const auto inv_ln2 = vreinterpretq_f32_u32(vdupq_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
    const auto neg_ln2_hi =
        vreinterpretq_f32_u32(vdupq_n_u32(0xbf317200)); // -ln(2) from bits  -1 to -19: -0x1.62e400p-1f
    const auto neg_ln2_lo =
        vreinterpretq_f32_u32(vdupq_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f

    const auto inf       = vdupq_n_f32(std::numeric_limits<float>::infinity());
    const auto max_input = vdupq_n_f32(88.37f); // Approximately ln(2^127.5)
    const auto zero      = vdupq_n_f32(0.f);
    const auto min_input = vdupq_n_f32(-86.64f); // Approximately ln(2^-125)

    // Range reduction:
    //   e^x = 2^n * e^r
    // where:
    //   n = floor(x / ln(2))
    //   r = x - n * ln(2)
    //
    // By adding x / ln(2) with 2^23 + 127 (shift):
    //   * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
    //     of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
    //     the whole fraction part of z in FP32 format.
    //     Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
    //     (i.e. n) because the decimal part has been pushed out and lost.
    //   * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
    //     in FP32 format. Left shifting z by 23 bits will result in 2^n.
    const auto z     = prefer_vfmaq_f32(shift, x, inv_ln2);
    const auto n     = z - shift;
    const auto scale = vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23); // 2^n

    // The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
    // This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
    const auto r_hi = prefer_vfmaq_f32(x, n, neg_ln2_hi);
    const auto r    = prefer_vfmaq_f32(r_hi, n, neg_ln2_lo);

    // Compute the truncated Taylor series of e^r.
    //   poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
    const auto r2 = r * r;

    const auto p1     = c1 * r;
    const auto p23    = prefer_vfmaq_f32(c2, c3, r);
    const auto p45    = prefer_vfmaq_f32(c4, c5, r);
    const auto p2345  = prefer_vfmaq_f32(p23, p45, r2);
    const auto p12345 = prefer_vfmaq_f32(p1, p2345, r2);

    auto poly = prefer_vfmaq_f32(scale, p12345, scale);

    // Handle underflow and overflow.
    poly = vbslq_f32(vcltq_f32(x, min_input), zero, poly);
    poly = vbslq_f32(vcgtq_f32(x, max_input), inf, poly);

    return poly;
}

#ifdef __aarch64__
inline float32x4_t verfq_f32(float32x4_t x)
{
    const float32x4_t max_value = vdupq_n_f32(3.9375);       // 4 - 8/128
    const float32x4_t shift     = vdupq_n_f32(65536);        // 2^16
    const float32x4_t third     = vdupq_n_f32(0.3333333333); // 1/3
    const float32x4_t one       = vdupq_n_f32(1.f);
    const uint32x4_t  max_index = vdupq_n_u32(512);
    const uint32x4_t  sign_mask = vdupq_n_u32(0x7fffffff);

    const float32x4_t x_abs = vabsq_f32(x);

    // erf(x) for x in [0, 3.9375] is approxiated as follows:
    //
    //   erf(x) = erf(r) + scale(r) * d * (1 - r * d - 1/3 * d^2)
    //
    // where:
    //   r = floor(x * 128) / 128
    //   d = x - r
    //
    // erf(r) and scale(r) are stored in a 513-entry lookup table.
    // The LUT covers the range from 0 to 4 with the step of 1/128.
    //
    // Special cases:
    //   erf(x) =  1 for x >  3.9375
    //   erf(x) = -1 for x < -3.9375

    // Find the LUT indices by rounding the input value to the step of 1/128.
    //
    // `shift` is used to push out the 16 LSBs of the input value. Only 7 bits in the fraction part
    // of the input value is preserved.
    const float32x4_t z = x_abs + shift;
    const float32x4_t r = z - shift;

    uint32x4_t index = vreinterpretq_u32_f32(z) - vreinterpretq_u32_f32(shift);
    index            = vminq_u32(index, max_index);

    // Lookup erf(r) and scale(r).
    const float64_t entry_0 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[0]]);
    const float64_t entry_1 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[1]]);
    const float64_t entry_2 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[2]]);
    const float64_t entry_3 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[3]]);

    const float32x4_t entry_01 = vreinterpretq_f32_f64(float64x2_t{entry_0, entry_1});
    const float32x4_t entry_23 = vreinterpretq_f32_f64(float64x2_t{entry_2, entry_3});

    const float32x4_t erf_r   = vuzp1q_f32(entry_01, entry_23);
    const float32x4_t scale_r = vuzp2q_f32(entry_01, entry_23);

    // Approximate erf(x) = erf(r) + scale(r) * d * (1 - r * d - 1/3 * d^2).
    const float32x4_t d  = x_abs - r;
    const float32x4_t d2 = d * d;

    const float32x4_t t0    = vfmaq_f32(r, third, d); // t0 = r + 1/3 * d.
    const float32x4_t t1    = vfmsq_f32(d, d2, t0);   // t1 = d - d2 * t0 = d * (1 - r * d - 1/3 * d^2).
    const float32x4_t erf_x = vfmaq_f32(erf_r, scale_r, t1);

    const float32x4_t clamped = vbslq_f32(x_abs > max_value, one, erf_x);
    const float32x4_t result  = vbslq_f32(sign_mask, clamped, x);

    return result;
}
#endif // #ifdef __aarch64__

inline float32x4_t vlogq_f32(float32x4_t x)
{
    static const int32x4_t   CONST_127 = vdupq_n_s32(127);           // 127
    static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)

    // Extract exponent
    int32x4_t   m   = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
    float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));

    // Polynomial Approximation
    float32x4_t poly = vtaylor_polyq_f32(val, log_tab);

    // Reconstruct
    poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);

    return poly;
}

inline float32x4_t vtanhq_f32(float32x4_t val)
{
    static const float32x4_t CONST_1        = vdupq_n_f32(1.f);
    static const float32x4_t CONST_2        = vdupq_n_f32(2.f);
    static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
    static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);
    static const float32x4_t CONST_THR      = vdupq_n_f32(5.e-3);
    static const float32x4_t CONST_1_3      = vdupq_n_f32(0.3333333f);

    float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
    // x * (1 - x^2/3) if |x| < 5.e-3 or (exp2x - 1) / (exp2x + 1) otherwise
    float32x4_t exp2x =
        vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vexpq_f32(vmulq_f32(CONST_2, x)), vmulq_f32(x, x));
    float32x4_t num =
        vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vsubq_f32(exp2x, CONST_1), vmulq_f32(CONST_1_3, exp2x));
    float32x4_t den = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vaddq_f32(exp2x, CONST_1), vsubq_f32(CONST_1, num));
    float32x4_t tanh = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vmulq_f32(num, vinvq_f32(den)), vmulq_f32(x, den));
    return tanh;
}

inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
{
    return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
}

inline float32x4_t vsinq_f32(float32x4_t val)
{
    const float32x4_t pi_v   = vdupq_n_f32(M_PI);
    const float32x4_t pio2_v = vdupq_n_f32(M_PI / 2);
    const float32x4_t ipi_v  = vdupq_n_f32(1 / M_PI);

    //Find positive or negative
    const int32x4_t  c_v    = vabsq_s32(vcvtq_s32_f32(vmulq_f32(val, ipi_v)));
    const uint32x4_t sign_v = vcleq_f32(val, vdupq_n_f32(0));
    const uint32x4_t odd_v  = vandq_u32(vreinterpretq_u32_s32(c_v), vdupq_n_u32(1));

    uint32x4_t neg_v = veorq_u32(odd_v, sign_v);

    //Modulus a - (n * int(a*(1/n)))
    float32x4_t      ma    = vsubq_f32(vabsq_f32(val), vmulq_f32(pi_v, vcvtq_f32_s32(c_v)));
    const uint32x4_t reb_v = vcgeq_f32(ma, pio2_v);

    //Rebase a between 0 and pi/2
    ma = vbslq_f32(reb_v, vsubq_f32(pi_v, ma), ma);

    //Taylor series
    const float32x4_t ma2 = vmulq_f32(ma, ma);

    //2nd elem: x^3 / 3!
    float32x4_t elem = vmulq_f32(vmulq_f32(ma, ma2), vdupq_n_f32(te_sin_coeff2));
    float32x4_t res  = vsubq_f32(ma, elem);

    //3rd elem: x^5 / 5!
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff3));
    res  = vaddq_f32(res, elem);

    //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff4));
    res  = vsubq_f32(res, elem);

    //5th elem: x^9 / 9!
    elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff5));
    res  = vaddq_f32(res, elem);

    //Change of sign
    neg_v = vshlq_n_u32(neg_v, 31);
    res   = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(res), neg_v));
    return res;
}

inline float32x2_t vsin_f32(float32x2_t val)
{
    const float32x2_t pi_v   = vdup_n_f32(M_PI);
    const float32x2_t pio2_v = vdup_n_f32(M_PI / 2);
    const float32x2_t ipi_v  = vdup_n_f32(1 / M_PI);

    //Find positive or negative
    const int32x2_t  c_v    = vabs_s32(vcvt_s32_f32(vmul_f32(val, ipi_v)));
    const uint32x2_t sign_v = vcle_f32(val, vdup_n_f32(0));
    const uint32x2_t odd_v  = vand_u32(vreinterpret_u32_s32(c_v), vdup_n_u32(1));

    uint32x2_t neg_v = veor_u32(odd_v, sign_v);

    //Modulus a - (n * int(a*(1/n)))
    float32x2_t      ma    = vsub_f32(vabs_f32(val), vmul_f32(pi_v, vcvt_f32_s32(c_v)));
    const uint32x2_t reb_v = vcge_f32(ma, pio2_v);

    //Rebase a between 0 and pi/2
    ma = vbsl_f32(reb_v, vsub_f32(pi_v, ma), ma);

    //Taylor series
    const float32x2_t ma2 = vmul_f32(ma, ma);

    //2nd elem: x^3 / 3!
    float32x2_t elem = vmul_f32(vmul_f32(ma, ma2), vdup_n_f32(te_sin_coeff2));
    float32x2_t res  = vsub_f32(ma, elem);

    //3rd elem: x^5 / 5!
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff3));
    res  = vadd_f32(res, elem);

    //4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff4));
    res  = vsub_f32(res, elem);

    //5th elem: x^9 / 9!
    elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff5));
    res  = vadd_f32(res, elem);

    //Change of sign
    neg_v = vshl_n_u32(neg_v, 31);
    res   = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(res), neg_v));
    return res;
}

#endif /* DOXYGEN_SKIP_THIS */

inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent)
{
    const int32x4_t shift_vec  = vnegq_s32(exponent);
    const int32x4_t fixup      = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
    const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
    return vrshlq_s32(fixed_up_x, shift_vec);
}

inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent)
{
    const int32x4_t shift_vec  = vdupq_n_s32(-exponent);
    const int32x4_t fixup      = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
    const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
    return vrshlq_s32(fixed_up_x, shift_vec);
}

inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
    const int32_t mask      = (1 << exponent) - 1;
    const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
    return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}

inline float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in)
{
    float32x4x4_t out;

    const auto tmp1 = vmovl_u8(vget_low_u8(in));
    out.val[0]      = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1)));
    out.val[1]      = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1)));

    const auto tmp2 = vmovl_u8(vget_high_u8(in));
    out.val[2]      = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp2)));
    out.val[3]      = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp2)));
    return out;
}

inline float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in)
{
    float32x4x4_t out;

    const auto tmp1 = vmovl_s8(vget_low_s8(in));
    out.val[0]      = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp1)));
    out.val[1]      = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp1)));

    const auto tmp2 = vmovl_s8(vget_high_s8(in));
    out.val[2]      = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp2)));
    out.val[3]      = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp2)));
    return out;
}

template <>
inline float32x4x4_t convert_to_float32x4x4(const uint8x16_t &in)
{
    return convert_uint8x16_to_float32x4x4(in);
}

template <>
inline float32x4x4_t convert_to_float32x4x4(const int8x16_t &in)
{
    return convert_int8x16_to_float32x4x4(in);
}

inline void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out)
{
    out.val[0] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[0])), vqmovn_u32(vcvtq_u32_f32(in2.val[0]))));
    out.val[1] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[1])), vqmovn_u32(vcvtq_u32_f32(in2.val[1]))));
    out.val[2] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[2])), vqmovn_u32(vcvtq_u32_f32(in2.val[2]))));
}

inline void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out)
{
    const auto low  = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[0])), vqmovn_u32(vcvtq_u32_f32(in.val[1])));
    const auto high = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[2])), vqmovn_u32(vcvtq_u32_f32(in.val[3])));
    out             = vcombine_u8(vqmovn_u16(low), vqmovn_u16(high));
}

inline void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out)
{
    const auto low  = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[0])), vqmovn_s32(vcvtq_s32_f32(in.val[1])));
    const auto high = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[2])), vqmovn_s32(vcvtq_s32_f32(in.val[3])));
    out             = vcombine_s8(vqmovn_s16(low), vqmovn_s16(high));
}

template <>
inline uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
{
    uint8x16_t out;
    convert_float32x4x4_to_uint8x16(in, out);
    return out;
}

template <>
inline float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
{
    return convert_uint8x16_to_float32x4x4(in);
}

template <>
inline int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
{
    int8x16_t out;
    convert_float32x4x4_to_int8x16(in, out);
    return out;
}

template <>
inline float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
{
    return convert_int8x16_to_float32x4x4(in);
}

inline float vreduce(const float32x4_t &v)
{
    const float32x2_t v0    = vget_high_f32(v);
    const float32x2_t v1    = vget_low_f32(v);
    const float32x2_t v_out = vadd_f32(v0, v1);

    const float a = vget_lane_f32(v_out, 0);
    const float b = vget_lane_f32(v_out, 1);

    return a + b;
}

#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Exponent polynomial coefficients */
/** Logarithm polynomial coefficients */
#ifndef DOXYGEN_SKIP_THIS
inline float16x8_t vfloorq_f16(float16x8_t val)
{
    static const float16x8_t CONST_1 = vdupq_n_f16(1.f);

    const int16x8_t   z = vcvtq_s16_f16(val);
    const float16x8_t r = vcvtq_f16_s16(z);

    return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r);
}

inline float16x8_t vroundq_rte_f16(float16x8_t val)
{
    return vrndnq_f16(val);
}

inline float16x4_t vinvsqrt_f16(float16x4_t x)
{
    float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    return sqrt_reciprocal;
}

inline float16x8_t vinvsqrtq_f16(float16x8_t x)
{
    float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
    sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
    return sqrt_reciprocal;
}

inline float16x4_t vinv_f16(float16x4_t x)
{
    float16x4_t recip = vrecpe_f16(x);
    recip             = vmul_f16(vrecps_f16(x, recip), recip);
    recip             = vmul_f16(vrecps_f16(x, recip), recip);
    return recip;
}

inline float16x8_t vinvq_f16(float16x8_t x)
{
    float16x8_t recip = vrecpeq_f16(x);
    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);
    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);
    return recip;
}

inline float16x4_t vtanh_rational_approx_f16(float16x4_t x16)
{
    // Calculate rational approximation part of tanh exactly on a half-register of F16 by using F32s
    // Note: doesn't handle overflows, needs truncating at |x| = 4.508
    const float32x4_t x = vcvt_f32_f16(x16);

    const float32x4_t ONE = vdupq_n_f32(1.0f);
    const float32x4_t C1  = vdupq_n_f32(0.43760237f);
    const float32x4_t C2  = vdupq_n_f32(0.104402f);
    const float32x4_t C3  = vdupq_n_f32(0.013442706f);
    const float32x4_t C4  = vdupq_n_f32(0.00073561433f);

    const float32x4_t x2 = vmulq_f32(x, x);

    // Denominator polynomial 1 + C1*x^2 + C3*x^4
    float32x4_t denom = vfmaq_f32(C1, C3, x2);
    denom             = vfmaq_f32(ONE, x2, denom);

    // Numerator polynomial x*(1 + C2*x^2 + C4*x^4)
    float32x4_t numer = vfmaq_f32(C2, C4, x2);
    numer             = vfmaq_f32(ONE, x2, numer);
    numer             = vmulq_f32(numer, x);

    return vcvt_f16_f32(vdivq_f32(numer, denom));
}

inline float16x8_t vtanhq_f16(float16x8_t x)
{
    // Split into high/low and use rational approximation on both parts exactly
    const float16x8_t tanh =
        vcombine_f16(vtanh_rational_approx_f16(vget_low_f16(x)), vtanh_rational_approx_f16(vget_high_f16(x)));

    // tanh(x) == sign(x) to F16 precision for |x| >= 4.508, use sign after this
    const float16x8_t ONE      = vdupq_n_f16(1.0f);
    const float16x8_t MAX_X    = vdupq_n_f16(4.508f);
    const auto        at_limit = vcageq_f16(x, MAX_X); // |x| >= 4.508
    const float16x8_t sign_x   = vbslq_f16(vclezq_f16(x), -ONE, ONE);
    return vbslq_f16(at_limit, sign_x, tanh);
}

inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
{
    const float16x8_t A   = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
    const float16x8_t B   = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
    const float16x8_t C   = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
    const float16x8_t D   = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
    const float16x8_t x2  = vmulq_f16(x, x);
    const float16x8_t x4  = vmulq_f16(x2, x2);
    const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
    return res;
}

inline float16x8_t vexpq_f16(float16x8_t x)
{
    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));

    const float16x8_t res = vcombine_f16(vcvt_f16_f32(vexpq_f32(x_low)), vcvt_f16_f32(vexpq_f32(x_high)));
    return res;
}

#ifdef __aarch64__
inline float16x8_t verfq_f16(float16x8_t x)
{
    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));

    const float16x8_t res = vcombine_f16(vcvt_f16_f32(verfq_f32(x_low)), vcvt_f16_f32(verfq_f32(x_high)));
    return res;
}
#endif // #ifdef __aarch64__

inline float16x8_t vlogq_f16(float16x8_t x)
{
    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));

    const float16x8_t res = vcombine_f16(vcvt_f16_f32(vlogq_f32(x_low)), vcvt_f16_f32(vlogq_f32(x_high)));
    return res;
}

inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
{
    float32x4_t n0_f32   = vcvt_f32_f16(vget_low_f16(n));
    float32x4_t n1_f32   = vcvt_f32_f16(vget_high_f16(n));
    float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
    float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));

    float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
    float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));

    return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
}

inline float16x8_t vsinq_f16(float16x8_t val)
{
    const float32x4_t val_high = vcvt_f32_f16(vget_high_f16(val));
    const float32x4_t val_low  = vcvt_f32_f16(vget_low_f16(val));

    const float32x4_t res_high = vsinq_f32(val_high);
    const float32x4_t res_low  = vsinq_f32(val_low);

    return vcombine_f16(vcvt_f16_f32(res_low), vcvt_f16_f32(res_high));
}

inline float16x4_t vsin_f16(float16x4_t val)
{
    const float32x4_t val_f32  = vcvt_f32_f16(val);
    const float32x2_t val_high = vget_high_f32(val_f32);
    const float32x2_t val_low  = vget_low_f32(val_f32);

    const float32x2_t res_high = vsin_f32(val_high);
    const float32x2_t res_low  = vsin_f32(val_low);

    return vcvt_f16_f32(vcombine_f32(res_low, res_high));
}

inline float16_t vreduce(const float16x8_t &v)
{
    const float16x4_t v0    = vget_high_f16(v);
    const float16x4_t v1    = vget_low_f16(v);
    const float16x4_t v_out = vadd_f16(v0, v1);

    const float16_t a = vget_lane_f16(v_out, 0);
    const float16_t b = vget_lane_f16(v_out, 1);
    const float16_t c = vget_lane_f16(v_out, 2);
    const float16_t d = vget_lane_f16(v_out, 3);

    return a + b + c + d;
}
#endif /* DOXYGEN_SKIP_THIS */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
} // namespace arm_compute