aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/kernels/CLSoftmaxLayerKernel.cpp
blob: 71f375f007fef64cc71ff4916f3cc6cd99385f9a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h"

#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"

#include <set>
#include <string>

using namespace arm_compute;

namespace
{
/** Calculates softmax parameters from the quantized input scale and scaling factor for the exponent and places them as build options.
 *
 * Prepares these build options:
 * -INPUT_BETA_MULTIPLIER, INPUT_BETA_LEFT_SHIFT - quantized representation of beta multiplier.
 * -DIFF_MIN - threshold difference between maximum value of input data and current processed value,
 *             it defines whether the value will be taken into account or not.
 *
 * @param[in] build_opts  Build options to extend
 * @param[in] input_scale Input scaling factor
 * @param[in] beta        Exponent scaling factor beta
 */
CLBuildOptions prepare_quantized_softmax_build_options(float input_scale, float beta)
{
    // Number of integer bits in temporary fixed-point representation of current-to-max difference
    static const int scaled_diff_int_bits = 5;
    // Number of integer bits used in temporary fixed-point representation of exponent accumulator
    static const int exp_accumulation_in_bits = 12;

    const double beta_multiplier = std::min(
                                       1.0 * beta * input_scale * (1 << (31 - scaled_diff_int_bits)),
                                       (1ll << 31) - 1.0);
    int input_beta_multiplier, input_beta_left_shift;
    quantization::calculate_quantized_multiplier_greater_than_one(beta_multiplier, &input_beta_multiplier, &input_beta_left_shift);

    const double max_input_rescaled = 1.0 * ((1 << scaled_diff_int_bits) - 1) * (1ll << (31 - scaled_diff_int_bits)) / (1ll << input_beta_left_shift);
    const int    diff_min           = -1.f * std::floor(max_input_rescaled);

    CLBuildOptions build_opts;
    build_opts.add_option("-DSCALED_DIFF_INT_BITS=" + support::cpp11::to_string(scaled_diff_int_bits));
    build_opts.add_option("-DEXP_ACCUMULATION_INT_BITS=" + support::cpp11::to_string(exp_accumulation_in_bits));
    build_opts.add_option("-DINPUT_BETA_MULTIPLIER=" + support::cpp11::to_string(input_beta_multiplier));
    build_opts.add_option("-DINPUT_BETA_LEFT_SHIFT=" + support::cpp11::to_string(input_beta_left_shift));
    build_opts.add_option("-DDIFF_MIN=" + support::cpp11::to_string(diff_min));

    return build_opts;
}

// Arguments Validation

Error validate_arguments_1DMax(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(output);

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        // Softmax across the x dimension
        TensorShape output_shape{ input->tensor_shape() };
        output_shape.set(0, 1);

        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
    }

    return Error{};
}

Error validate_arguments_1DShiftExpSum(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(max, sum, output);

    const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->data_type());

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        if(is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        }
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, output);
    }

    // Checks performed when sum is configured
    if(sum->total_size() != 0)
    {
        if(is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(sum, 1, DataType::S32);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(max, sum);
        }
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(max, sum);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(max, sum);
    }

    return Error{};
}

Error validate_arguments_1DMaxShiftExpSum(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(max, sum, output);

    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, max);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, max);

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, output);
    }

    // Checks performed when sum is configured
    if(sum->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(max, sum);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(max, sum);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(max, sum);
    }

    return Error{};
}

Error validate_arguments_1DNorm(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::S32, DataType::F16, DataType::F32);
    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(sum, output);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, sum);
    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, sum);

    // Note: output should always have a scale of 1/256 and offset 0
    const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.f / 256, 0);
    const bool             is_quantized_asymmetric   = (input->data_type() == DataType::S32);

    // Checks performed when output is configured
    if(output->total_size() != 0)
    {
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT_POSITION(input, output);
        if(!is_quantized_asymmetric)
        {
            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
        }
        else
        {
            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
            ARM_COMPUTE_RETURN_ERROR_ON(output->quantization_info() != allowed_quantization_info);
        }
    }

    return Error{};
}

// Window validation

std::pair<Error, Window> validate_and_configure_window_1DMax(ITensorInfo *input, ITensorInfo *output)
{
    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(0, 1);

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output, input->clone()->set_tensor_shape(output_shape));

    // The kernel loops over all elements in steps of 16
    const unsigned int     num_elems_processed_per_iteration = ceil_to_multiple(input->dimension(0), 16);
    constexpr unsigned int num_elems_written_per_iteration   = 1;

    Window                 win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal output_access(output, 0, num_elems_written_per_iteration);

    bool window_changed = update_window_and_padding(win, input_access, output_access);

    output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));

    Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{};
    return std::make_pair(err, win);
}

std::pair<Error, Window> validate_and_configure_window_1DShiftExpSum(ITensorInfo *input, ITensorInfo *max, ITensorInfo *output, ITensorInfo *sum)
{
    const bool     is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->data_type());
    const DataType tmp_data_type           = is_quantized_asymmetric ? DataType::S32 : input->data_type();

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*sum, max->clone()->set_data_type(tmp_data_type).set_fixed_point_position(input->fixed_point_position()));
    auto_init_if_empty(*output, input->clone()->set_data_type(tmp_data_type));

    // The kernel loops over all elements in steps of 16
    const unsigned int num_elems_processed_per_iteration = ceil_to_multiple(input->dimension(0), 16);

    Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal max_access(max, 0, 1);
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
    AccessWindowHorizontal sum_access(sum, 0, 1);

    bool window_changed = update_window_and_padding(win, input_access, max_access, output_access, sum_access);

    output_access.set_valid_region(win, input->valid_region());
    sum_access.set_valid_region(win, ValidRegion(Coordinates(), sum->tensor_shape()));

    Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{};
    return std::make_pair(err, win);
}

std::pair<Error, Window> validate_and_configure_window_1DMaxShiftExpSum(ITensorInfo *input, ITensorInfo *max, ITensorInfo *output, ITensorInfo *sum)
{
    // Output auto initialization if not yet initialized
    auto_init_if_empty(*sum, input->clone()->set_tensor_shape(max->tensor_shape()));
    auto_init_if_empty(*output, *input->clone());

    CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo parallel_reduction_info = CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(input->dimension(0));
    unsigned int                                          vector_size             = std::get<1>(parallel_reduction_info);
    const unsigned int                                    num_elems_x             = ceil_to_multiple(input->tensor_shape().x(), vector_size);
    Window                                                win                     = calculate_max_window(*input, Steps(num_elems_x));

    AccessWindowHorizontal input_access(input, 0, num_elems_x);
    AccessWindowHorizontal max_access(max, 0, 1);
    AccessWindowHorizontal output_access(output, 0, num_elems_x);
    AccessWindowHorizontal sum_access(sum, 0, 1);

    bool window_changed = update_window_and_padding(win, input_access, max_access, output_access, sum_access);

    output_access.set_valid_region(win, input->valid_region());
    sum_access.set_valid_region(win, ValidRegion(Coordinates(), sum->tensor_shape()));

    Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{};
    return std::make_pair(err, win);
}

std::pair<Error, Window> validate_and_configure_window_1DNorm(ITensorInfo *input, ITensorInfo *output, ITensorInfo *sum)
{
    const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.f / 256, 0);
    const bool             is_quantized_asymmetric   = (input->data_type() == DataType::S32);
    const DataType         output_data_type          = is_quantized_asymmetric ? DataType::QASYMM8 : input->data_type();

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output,
                       input->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));

    constexpr unsigned int num_elems_processed_per_iteration = 16;

    Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));

    AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
    AccessWindowStatic     sum_access(sum, 0, 0, 1, sum->dimension(1));
    AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);

    bool window_changed = update_window_and_padding(win, input_access, sum_access, output_access);

    output_access.set_valid_region(win, input->valid_region());

    Error err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Error{};
    return std::make_pair(err, win);
}

} // namespace

void CLLogits1DMaxKernel::configure(const ICLTensor *input, ICLTensor *output)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);

    TensorShape output_shape{ input->info()->tensor_shape() };
    output_shape.set(0, 1);

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMax(input->info(), output->info()));

    _input  = input;
    _output = output;

    const DataType data_type = input->info()->data_type();

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
    build_opts.add_option_if(is_data_type_fixed_point(data_type),
                             "-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position()));
    build_opts.add_option_if(data_type == DataType::F16, "-DUSE_F16");
    // Tell the kernel that the width is not a multiple of 16
    build_opts.add_option_if((input->info()->dimension(0) % max_cl_vector_width) != 0, "-DNON_MULTIPLE_OF_16");

    // Create kernel
    std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "softmax_layer_max_quantized" : "softmax_layer_max";
    _kernel                 = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));

    // Set fixed arguments
    unsigned int idx = 2 * num_arguments_per_3D_tensor(); //Skip the input and output parameters
    _kernel.setArg<cl_uint>(idx++, input->info()->dimension(0));

    // Configure kernel window
    auto win_config = validate_and_configure_window_1DMax(input->info(), output->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure(win_config.second);

    // Set config_id for enabling LWS tuning
    _config_id = "softmax_layer_";
    _config_id += lower_string(string_from_data_type(data_type));
    _config_id += "_";
    _config_id += support::cpp11::to_string(input->info()->dimension(0));
    _config_id += "_";
    _config_id += support::cpp11::to_string(input->info()->dimension(1));
}

Error CLLogits1DMaxKernel::validate(const ITensorInfo *input, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMax(input, output));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DMax(input->clone().get(), output->clone().get()).first);

    return Error{};
}

CLLogits1DShiftExpSumKernel::CLLogits1DShiftExpSumKernel()
    : _input(nullptr), _max(nullptr), _output(nullptr), _sum(nullptr)
{
}

void CLLogits1DShiftExpSumKernel::configure(const ICLTensor *input, const ICLTensor *max, ICLTensor *output, ICLTensor *sum, float beta)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, sum, output);

    const bool     is_quantized_asymmetric = is_data_type_quantized_asymmetric(input->info()->data_type());
    const DataType tmp_data_type           = is_quantized_asymmetric ? DataType::S32 : input->info()->data_type();

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*sum->info(), max->info()->clone()->set_data_type(tmp_data_type).set_fixed_point_position(input->info()->fixed_point_position()));
    auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(tmp_data_type));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DShiftExpSum(input->info(), max->info(), output->info(), sum->info()));

    _input  = input;
    _max    = max;
    _output = output;
    _sum    = sum;

    const DataType dt       = input->info()->data_type();
    auto           beta_int = static_cast<int>(lround(beta * (1 << input->info()->fixed_point_position())));

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option(std::string("-DDATA_TYPE=" + get_cl_type_from_data_type(dt)));
    build_opts.add_option_if(is_data_type_fixed_point(dt),
                             std::string("-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position())));
    build_opts.add_option_if(dt == DataType::F16, std::string("-DUSE_F16"));
    // Tell the kernel that the width is not a multiple of 16
    build_opts.add_option_if((input->info()->dimension(0) % max_cl_vector_width) != 0, std::string("-DNON_MULTIPLE_OF_16"));
    build_opts.add_option_if(is_data_type_fixed_point(dt) && (beta != 1.0f), std::string("-DBETA=" + support::cpp11::to_string(beta_int)));
    build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), std::string("-DBETA=" + float_to_string_with_full_precision(beta)));
    build_opts.add_options_if(is_quantized_asymmetric,
                              prepare_quantized_softmax_build_options(input->info()->quantization_info().scale, beta).options());

    // Create kernel
    std::string kernel_name = is_quantized_asymmetric ? "softmax_layer_shift_exp_sum_quantized" : "softmax_layer_shift_exp_sum";
    _kernel                 = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));

    // Set fixed arguments
    unsigned int idx = 4 * num_arguments_per_3D_tensor(); //Skip the input and output parameters
    _kernel.setArg<cl_uint>(idx++, input->info()->dimension(0));

    // Configure window
    auto win_config = validate_and_configure_window_1DShiftExpSum(input->info(), max->info(), output->info(), sum->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure(win_config.second);
}

Error CLLogits1DShiftExpSumKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DShiftExpSum(input, max, output, sum));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DShiftExpSum(input->clone().get(), max->clone().get(), output->clone().get(), sum->clone().get()).first);

    return Error{};
}

void CLLogits1DShiftExpSumKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
    Window slice            = window_collapsed.first_slice_window_3D();

    do
    {
        unsigned int idx = 0;
        // Set inputs
        add_3D_tensor_argument(idx, _input, slice);
        add_3D_tensor_argument(idx, _max, slice);
        add_3D_tensor_argument(idx, _output, slice);
        add_3D_tensor_argument(idx, _sum, slice);
        enqueue(queue, *this, slice, _lws_hint);
    }
    while(window_collapsed.slide_window_slice_3D(slice));
}

/**< Grid size (obtained through auto-tuning) */
const unsigned int CLLogits1DMaxShiftExpSumKernel::_grid_size = 64;
/**< Vector size in the serial case (obtained through auto-tuning) */
const unsigned int CLLogits1DMaxShiftExpSumKernel::_serial_vector_size = 8;
/**< Vector size in the parallel case (obtained through auto-tuning, enables the best memory access pattern for Bifrost) .*/
const unsigned int CLLogits1DMaxShiftExpSumKernel::_parallel_vector_size = 4;

CLLogits1DMaxShiftExpSumKernel::CLLogits1DMaxShiftExpSumKernel()
    : _input(nullptr), _max(nullptr), _output(nullptr), _sum(nullptr)
{
}

void CLLogits1DMaxShiftExpSumKernel::configure(const ICLTensor *input, ICLTensor *max, ICLTensor *output, ICLTensor *sum, float beta)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, max, sum, output);

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*sum->info(), input->info()->clone()->set_tensor_shape(max->info()->tensor_shape()));
    auto_init_if_empty(*output->info(), *input->info()->clone());

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info()));

    _input  = input;
    _max    = max;
    _output = output;
    _sum    = sum;

    const DataType dt                 = input->info()->data_type();
    const size_t   reduction_dim_size = input->info()->dimension(0);
    auto           beta_int           = static_cast<int>(lround(beta * (1 << input->info()->fixed_point_position())));

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(dt));
    build_opts.add_option_if(is_data_type_fixed_point(dt),
                             "-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position()));
    build_opts.add_option_if(dt == DataType::F16, "-DUSE_F16");
    build_opts.add_option_if(is_data_type_fixed_point(dt) && (beta != 1.0f), "-DBETA=" + support::cpp11::to_string(beta_int));
    build_opts.add_option_if(is_data_type_float(dt) && (beta != 1.0f), "-DBETA=" + float_to_string_with_full_precision(beta));

    _lws_hint                                     = cl::NullRange;
    std::string           kernel_name             = std::string("softmax_layer_max_shift_exp_sum_serial");
    ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(reduction_dim_size);
    unsigned int          vector_size             = std::get<1>(parallel_reduction_info);

    build_opts.add_option("-DVECTOR_SIZE=" + support::cpp11::to_string(vector_size));
    build_opts.add_option("-DLOG_VECTOR_SIZE=" + support::cpp11::to_string(lround(log2(vector_size))));
    build_opts.add_option_if((reduction_dim_size % vector_size) != 0, "-DNON_MULTIPLE_OF_VECTOR_SIZE");

    // Configure parallel kernel if needed
    if(std::get<0>(parallel_reduction_info))
    {
        kernel_name            = std::string("softmax_layer_max_shift_exp_sum_parallel");
        bool is_grid_size_pow2 = (_grid_size != 0) && ((_grid_size & (_grid_size - 1)) == 0);
        build_opts.add_option_if(is_grid_size_pow2 && _grid_size <= 256, "-DGRID_SIZE=" + support::cpp11::to_string(_grid_size));

        // Handle boundary conditions.
        const unsigned int multiple_grid_size = (reduction_dim_size / vector_size) % _grid_size;
        build_opts.add_option_if((multiple_grid_size != 0) || ((reduction_dim_size % vector_size) != 0), "-DNON_MULTIPLE_OF_GRID_SIZE");
        // Setting _lws_hint in this way can also communicate grid_size to CLLogits1DMaxShiftExpSumKernel::run().
        // A single workgroup performs reduction in dimension 0 in the parallel case, hence lws[0]==gws[0].
        _lws_hint = cl::NDRange(_grid_size);
    }

    // Create kernel.
    _kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));

    // Set static arguments. Both the kernels use the same arguments
    unsigned int idx = 4 * num_arguments_per_3D_tensor(); //Skip the input and output parameters
    _kernel.setArg<cl_uint>(idx++, reduction_dim_size);

    // Configure window
    auto win_config = validate_and_configure_window_1DMaxShiftExpSum(input->info(), max->info(), output->info(), sum->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure(win_config.second);
}

Error CLLogits1DMaxShiftExpSumKernel::validate(const ITensorInfo *input, const ITensorInfo *max, const ITensorInfo *output, const ITensorInfo *sum)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DMaxShiftExpSum(input, max, output, sum));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DMaxShiftExpSum(input->clone().get(), max->clone().get(), output->clone().get(), sum->clone().get()).first);

    return Error{};
}

CLLogits1DMaxShiftExpSumKernel::ParallelReductionInfo CLLogits1DMaxShiftExpSumKernel::is_parallel_reduction(size_t size)
{
    bool         is_parallel_reduction = (size >= (_grid_size * _serial_vector_size)) && (_grid_size > 1);
    unsigned int vector_size           = is_parallel_reduction ? _parallel_vector_size : _serial_vector_size;
    return std::make_tuple(is_parallel_reduction, vector_size);
}

void CLLogits1DMaxShiftExpSumKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    // Collapse window in Z dimension
    Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);

    // Reconfigure window in case of parallel reduction
    ParallelReductionInfo parallel_reduction_info = is_parallel_reduction(_input->info()->dimension(0));
    if(std::get<0>(parallel_reduction_info))
    {
        // To launch grid_size parallel workitems, steps.x should be modified as follows.
        const unsigned int step = std::get<1>(parallel_reduction_info);
        window_collapsed.set(Window::DimX, Window::Dimension(0, _grid_size * step, step));
    }

    // Get slices
    Window slice = window_collapsed.first_slice_window_3D();
    do
    {
        unsigned int idx = 0;
        // Set inputs
        add_3D_tensor_argument(idx, _input, slice);
        add_3D_tensor_argument(idx, _max, slice);
        add_3D_tensor_argument(idx, _output, slice);
        add_3D_tensor_argument(idx, _sum, slice);
        enqueue(queue, *this, slice, _lws_hint);
    }
    while(window_collapsed.slide_window_slice_3D(slice));
}

CLLogits1DNormKernel::CLLogits1DNormKernel()
    : _input(nullptr), _sum(nullptr), _output(nullptr)
{
}

void CLLogits1DNormKernel::configure(const ICLTensor *input, const ICLTensor *sum, ICLTensor *output, float beta)
{
    ARM_COMPUTE_ERROR_ON_NULLPTR(input, sum, output);

    // Note: output should always have a scale of 1/256 and offset 0
    const QuantizationInfo allowed_quantization_info = QuantizationInfo(1.f / 256, 0);
    const bool             is_quantized_asymmetric   = (input->info()->data_type() == DataType::S32);
    const DataType         output_data_type          = is_quantized_asymmetric ? DataType::QASYMM8 : input->info()->data_type();

    // Output auto initialization if not yet initialized
    auto_init_if_empty(*output->info(),
                       input->info()->clone()->set_data_type(output_data_type).set_quantization_info(allowed_quantization_info));

    // Perform validation step
    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_1DNorm(input->info(), sum->info(), output->info()));

    _input  = input;
    _sum    = sum;
    _output = output;

    // Set build options
    CLBuildOptions build_opts;
    build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(input->info()->data_type()));
    build_opts.add_option_if(is_data_type_fixed_point(input->info()->data_type()),
                             "-DFIXED_POINT_POSITION=" + support::cpp11::to_string(input->info()->fixed_point_position()));
    build_opts.add_options_if(is_quantized_asymmetric,
                              prepare_quantized_softmax_build_options(input->info()->quantization_info().scale, beta).options());

    // Create kernel
    std::string kernel_name = is_quantized_asymmetric ? "softmax_layer_norm_quantized" : "softmax_layer_norm";
    _kernel                 = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));

    // Configure window
    auto win_config = validate_and_configure_window_1DNorm(input->info(), output->info(), sum->info());
    ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
    ICLKernel::configure(win_config.second);
}

Error CLLogits1DNormKernel::validate(const ITensorInfo *input, const ITensorInfo *sum, const ITensorInfo *output)
{
    ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_1DNorm(input, sum, output));
    ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_1DNorm(input->clone().get(), output->clone().get(), sum->clone().get()).first);

    return Error{};
}

void CLLogits1DNormKernel::run(const Window &window, cl::CommandQueue &queue)
{
    ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
    ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);

    Window window_collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
    Window slice            = window_collapsed.first_slice_window_3D();

    do
    {
        Window sum_slice = slice;
        sum_slice.set(Window::DimX, Window::Dimension(0, 1, 1));

        unsigned int idx = 0;
        // Set inputs
        add_3D_tensor_argument(idx, _input, slice);
        add_3D_tensor_argument(idx, _sum, sum_slice);
        add_3D_tensor_argument(idx, _output, slice);
        enqueue(queue, *this, slice, _lws_hint);
    }
    while(window_collapsed.slide_window_slice_3D(slice));
}