aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/winograd.cl
blob: cda23b0155d8c971e9b99b18b42bf97b8bc26ef9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
/*
 * Copyright (c) 2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#if defined(NUM_CHANNELS)

/** This OpenCL kernel performs Winograd filter transform 3x3 when the data format is NCHW and the output tile is 2x2
 *
 * @note The number of channels must be passed at compile time using -DNUM_CHANNELS: e.g. -DNUM_CHANNELS=64
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes)
 * @param[in]  src_step_w                        src_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_filter_transform_2x2_3x3_nchw(
    TENSOR4D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, NUM_CHANNELS);

    const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);

    // Load the values from the input tensor
    float3 w0 = vload3(0, (__global float *)(src_addr + 0 * src_stride_y));
    float3 w1 = vload3(0, (__global float *)(src_addr + 1 * src_stride_y));
    float3 w2 = vload3(0, (__global float *)(src_addr + 2 * src_stride_y));

    // Transform the 3x3 tile in a 4x4 tile
    float4 out0 = 0.0f;
    float4 out1 = 0.0f;
    float4 out2 = 0.0f;
    float4 out3 = 0.0f;

    // Row 0
    out0.s0 = (w0.s0);
    out0.s1 = (w0.s0 + w0.s1 + w0.s2) * 0.5f;
    out0.s2 = (w0.s0 + w0.s2 - w0.s1) * 0.5f;
    out0.s3 = (w0.s2);

    // Row 1
    out1.s0 = (w0.s0 + w1.s0 + w2.s0) * 0.5f;
    out1.s1 = (w0.s0 + w1.s0 + w2.s0 + w0.s1 + w1.s1 + w2.s1 + w0.s2 + w1.s2 + w2.s2) * 0.25f;
    out1.s2 = (w0.s0 + w1.s0 + w2.s0 + w0.s2 + w1.s2 + w2.s2 - w0.s1 - w1.s1 - w2.s1) * 0.25f;
    out1.s3 = (w0.s2 + w1.s2 + w2.s2) * 0.5f;

    // Row 2
    out2.s0 = (w0.s0 + w2.s0 - w1.s0) * 0.5f;
    out2.s1 = (w0.s0 + w2.s0 + w0.s1 + w2.s1 + w0.s2 + w2.s2 - w1.s0 - w1.s1 - w1.s2) * 0.25f;
    out2.s2 = (w0.s0 + w2.s0 + w1.s1 + w0.s2 + w2.s2 - w1.s0 - w0.s1 - w2.s1 - w1.s2) * 0.25f;
    out2.s3 = (w0.s2 + w2.s2 - w1.s2) * 0.5f;

    // Row 3
    out3.s0 = (w2.s0);
    out3.s1 = (w2.s0 + w2.s1 + w2.s2) * 0.5f;
    out3.s2 = (w2.s0 + w2.s2 - w2.s1) * 0.5f;
    out3.s3 = (w2.s2);

    int z  = get_global_id(2);
    int x0 = z / NUM_CHANNELS; // idx filter
    int y0 = z % NUM_CHANNELS; // idx channel

    // Get output address
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x0 * dst_stride_x + y0 * dst_stride_y;

    // Store the 16 values across the 16 channels
    *(__global float *)(dst_addr + 0 * dst_stride_z)  = out0.s0;
    *(__global float *)(dst_addr + 1 * dst_stride_z)  = out0.s1;
    *(__global float *)(dst_addr + 2 * dst_stride_z)  = out0.s2;
    *(__global float *)(dst_addr + 3 * dst_stride_z)  = out0.s3;
    *(__global float *)(dst_addr + 4 * dst_stride_z)  = out1.s0;
    *(__global float *)(dst_addr + 5 * dst_stride_z)  = out1.s1;
    *(__global float *)(dst_addr + 6 * dst_stride_z)  = out1.s2;
    *(__global float *)(dst_addr + 7 * dst_stride_z)  = out1.s3;
    *(__global float *)(dst_addr + 8 * dst_stride_z)  = out2.s0;
    *(__global float *)(dst_addr + 9 * dst_stride_z)  = out2.s1;
    *(__global float *)(dst_addr + 10 * dst_stride_z) = out2.s2;
    *(__global float *)(dst_addr + 11 * dst_stride_z) = out2.s3;
    *(__global float *)(dst_addr + 12 * dst_stride_z) = out3.s0;
    *(__global float *)(dst_addr + 13 * dst_stride_z) = out3.s1;
    *(__global float *)(dst_addr + 14 * dst_stride_z) = out3.s2;
    *(__global float *)(dst_addr + 15 * dst_stride_z) = out3.s3;
}

/** This OpenCL kernel performs Winograd filter transform 3x3 when the data format is NCHW and the output tile is 4x4
 *
 * @note The number of channels must be passed at compile time using -DNUM_CHANNELS: e.g. -DNUM_CHANNELS=64
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes)
 * @param[in]  src_step_w                        src_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_filter_transform_4x4_3x3_nchw(
    TENSOR4D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, NUM_CHANNELS);

    const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);

    // Load the values from the input tensor
    float3 w0 = vload3(0, (__global float *)(src_addr + 0 * src_stride_y));
    float3 w1 = vload3(0, (__global float *)(src_addr + 1 * src_stride_y));
    float3 w2 = vload3(0, (__global float *)(src_addr + 2 * src_stride_y));

    // Transform the 3x3 tile in a 6x6 tile
    float8 out0 = 0.0f;
    float8 out1 = 0.0f;
    float8 out2 = 0.0f;
    float8 out3 = 0.0f;
    float8 out4 = 0.0f;
    float8 out5 = 0.0f;

    // Row 0
    out0.s0 = (w0.s0) / 16.f;
    out0.s1 = (-w0.s0 - w0.s1 - w0.s2) / 24.f;
    out0.s2 = (-w0.s0 + w0.s1 - w0.s2) / 24.f;
    out0.s3 = (w0.s0 + 2.f * w0.s1 + 4.f * w0.s2) / 96.f;
    out0.s4 = (w0.s0 - 2.f * w0.s1 + 4.f * w0.s2) / 96.f;
    out0.s5 = (w0.s2) / 4.f;

    // Row 1
    out1.s0 = (-w0.s0 - w1.s0 - w2.s0) / 24.f;
    out1.s1 = (w0.s0 + w1.s0 + w2.s0 + w0.s1 + w1.s1 + w2.s1 + w0.s2 + w1.s2 + w2.s2) / 36.f;
    out1.s2 = (w0.s0 + w1.s0 + w2.s0 - w0.s1 - w1.s1 - w2.s1 + w0.s2 + w1.s2 + w2.s2) / 36.f;
    out1.s3 = (-w0.s0 - w1.s0 - w2.s0 + 2.f * (-w0.s1 - w1.s1 - w2.s1) + 4.f * (-w0.s2 - w1.s2 - w2.s2)) / 144.f;
    out1.s4 = (-w0.s0 - w1.s0 - w2.s0 + 2.f * (w0.s1 + w1.s1 + w2.s1) + 4.f * (-w0.s2 - w1.s2 - w2.s2)) / 144.f;
    out1.s5 = (-w0.s2 - w1.s2 - w2.s2) / 6.f;

    // Row 2
    out2.s0 = (-w0.s0 + w1.s0 - w2.s0) / 24.f;
    out2.s1 = (w0.s0 - w1.s0 + w2.s0 + w0.s1 - w1.s1 + w2.s1 + w0.s2 - w1.s2 + w2.s2) / 36.f;
    out2.s2 = (w0.s0 - w1.s0 + w2.s0 - w0.s1 + w1.s1 - w2.s1 + w0.s2 - w1.s2 + w2.s2) / 36.f;
    out2.s3 = (-w0.s0 + w1.s0 - w2.s0 + 2.f * (-w0.s1 + w1.s1 - w2.s1) + 4.f * (-w0.s2 + w1.s2 - w2.s2)) / 144.f;
    out2.s4 = (-w0.s0 + w1.s0 - w2.s0 + 2.f * (w0.s1 - w1.s1 + w2.s1) + 4.f * (-w0.s2 + w1.s2 - w2.s2)) / 144.f;
    out2.s5 = (-w0.s2 + w1.s2 - w2.s2) / 6.f;

    // Row 3
    out3.s0 = (w0.s0 + 2.f * w1.s0 + 4.f * w2.s0) / 96.f;
    out3.s1 = (-w0.s0 - 2.f * w1.s0 - 4.f * w2.s0 - w0.s1 - 2.f * w1.s1 - 4.f * w2.s1 - w0.s2 - 2.f * w1.s2 - 4.f * w2.s2) / 144.f;
    out3.s2 = (-w0.s0 - 2.f * w1.s0 - 4.f * w2.s0 + w0.s1 + 2.f * w1.s1 + 4.f * w2.s1 - w0.s2 - 2.f * w1.s2 - 4.f * w2.s2) / 144.f;
    out3.s3 = ((w0.s0 + 2.f * w1.s0 + 4.f * w2.s0) + 2.f * (w0.s1 + 2.f * w1.s1 + 4.f * w2.s1) + 4.f * (w0.s2 + 2.f * w1.s2 + 4.f * w2.s2)) / 576.f;
    out3.s4 = ((w0.s0 + 2.f * w1.s0 + 4.f * w2.s0) + 2.f * (-w0.s1 - 2.f * w1.s1 - 4.f * w2.s1) + 4.f * (w0.s2 + 2.f * w1.s2 + 4.f * w2.s2)) / 576.f;
    out3.s5 = (w0.s2 + 2.f * w1.s2 + 4.f * w2.s2) / 24.f;

    // Row 4
    out4.s0 = (w0.s0 - 2.f * w1.s0 + 4.f * w2.s0) / 96.f;
    out4.s1 = (-w0.s0 + 2.f * w1.s0 - 4.f * w2.s0 - w0.s1 + 2.f * w1.s1 - 4.f * w2.s1 - w0.s2 + 2.f * w1.s2 - 4.f * w2.s2) / 144.f;
    out4.s2 = (-w0.s0 + 2.f * w1.s0 - 4.f * w2.s0 + w0.s1 - 2.f * w1.s1 + 4.f * w2.s1 - w0.s2 + 2.f * w1.s2 - 4.f * w2.s2) / 144.f;
    out4.s3 = ((w0.s0 - 2.f * w1.s0 + 4.f * w2.s0) + 2.f * (w0.s1 - 2.f * w1.s1 + 4.f * w2.s1) + 4.f * (w0.s2 - 2.f * w1.s2 + 4.f * w2.s2)) / 576.f;
    out4.s4 = ((w0.s0 - 2.f * w1.s0 + 4.f * w2.s0) + 2.f * (-w0.s1 + 2.f * w1.s1 - 4.f * w2.s1) + 4.f * (w0.s2 - 2.f * w1.s2 + 4.f * w2.s2)) / 576.f;
    out4.s5 = (w0.s2 - 2.f * w1.s2 + 4.f * w2.s2) / 24.f;

    // Row 5
    out5.s0 = (w2.s0) / 4.f;
    out5.s1 = (-w2.s0 - w2.s1 - w2.s2) / 6.f;
    out5.s2 = (-w2.s0 + w2.s1 - w2.s2) / 6.f;
    out5.s3 = (w2.s0 + 2.f * w2.s1 + 4.f * w2.s2) / 24.f;
    out5.s4 = (w2.s0 - 2.f * w2.s1 + 4.f * w2.s2) / 24.f;
    out5.s5 = (w2.s2);

    int z  = get_global_id(2);
    int x0 = z / NUM_CHANNELS; // idx filter
    int y0 = z % NUM_CHANNELS; // idx channel

    // Get output address
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x0 * dst_stride_x + y0 * dst_stride_y;

    // Store the 36 values across the 36 channels
    *(__global float *)(dst_addr + 0 * dst_stride_z)  = out0.s0;
    *(__global float *)(dst_addr + 1 * dst_stride_z)  = out0.s1;
    *(__global float *)(dst_addr + 2 * dst_stride_z)  = out0.s2;
    *(__global float *)(dst_addr + 3 * dst_stride_z)  = out0.s3;
    *(__global float *)(dst_addr + 4 * dst_stride_z)  = out0.s4;
    *(__global float *)(dst_addr + 5 * dst_stride_z)  = out0.s5;
    *(__global float *)(dst_addr + 6 * dst_stride_z)  = out1.s0;
    *(__global float *)(dst_addr + 7 * dst_stride_z)  = out1.s1;
    *(__global float *)(dst_addr + 8 * dst_stride_z)  = out1.s2;
    *(__global float *)(dst_addr + 9 * dst_stride_z)  = out1.s3;
    *(__global float *)(dst_addr + 10 * dst_stride_z) = out1.s4;
    *(__global float *)(dst_addr + 11 * dst_stride_z) = out1.s5;
    *(__global float *)(dst_addr + 12 * dst_stride_z) = out2.s0;
    *(__global float *)(dst_addr + 13 * dst_stride_z) = out2.s1;
    *(__global float *)(dst_addr + 14 * dst_stride_z) = out2.s2;
    *(__global float *)(dst_addr + 15 * dst_stride_z) = out2.s3;
    *(__global float *)(dst_addr + 16 * dst_stride_z) = out2.s4;
    *(__global float *)(dst_addr + 17 * dst_stride_z) = out2.s5;
    *(__global float *)(dst_addr + 18 * dst_stride_z) = out3.s0;
    *(__global float *)(dst_addr + 19 * dst_stride_z) = out3.s1;
    *(__global float *)(dst_addr + 20 * dst_stride_z) = out3.s2;
    *(__global float *)(dst_addr + 21 * dst_stride_z) = out3.s3;
    *(__global float *)(dst_addr + 22 * dst_stride_z) = out3.s4;
    *(__global float *)(dst_addr + 23 * dst_stride_z) = out3.s5;
    *(__global float *)(dst_addr + 24 * dst_stride_z) = out4.s0;
    *(__global float *)(dst_addr + 25 * dst_stride_z) = out4.s1;
    *(__global float *)(dst_addr + 26 * dst_stride_z) = out4.s2;
    *(__global float *)(dst_addr + 27 * dst_stride_z) = out4.s3;
    *(__global float *)(dst_addr + 28 * dst_stride_z) = out4.s4;
    *(__global float *)(dst_addr + 29 * dst_stride_z) = out4.s5;
    *(__global float *)(dst_addr + 30 * dst_stride_z) = out5.s0;
    *(__global float *)(dst_addr + 31 * dst_stride_z) = out5.s1;
    *(__global float *)(dst_addr + 32 * dst_stride_z) = out5.s2;
    *(__global float *)(dst_addr + 33 * dst_stride_z) = out5.s3;
    *(__global float *)(dst_addr + 34 * dst_stride_z) = out5.s4;
    *(__global float *)(dst_addr + 35 * dst_stride_z) = out5.s5;
}

/** This OpenCL kernel performs Winograd filter transform 5x5 when the data format is NCHW and the output tile is 4x4
 *
 * @note The number of channels must be passed at compile time using -DNUM_CHANNELS: e.g. -DNUM_CHANNELS=64
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes)
 * @param[in]  src_step_w                        src_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_filter_transform_4x4_5x5_nchw(
    TENSOR4D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, NUM_CHANNELS);

    const __global uchar *src_addr = tensor4D_offset(&src, 0, 0, 0, 0);

    // Load the values from the input tensor
    const char   stride_x = 4 * sizeof(float); // Used for accessing the last value in each row
    const uchar8 stride_y = (uchar8)(0, 1, 2, 3, 4, 0, 0, 0) * (uchar8)src_stride_y;

    float4 w00 = vload4(0, (__global float *)(src_addr + stride_y.s0));
    float  w01 = *((__global float *)(src_addr + stride_y.s0 + stride_x));
    float4 w10 = vload4(0, (__global float *)(src_addr + stride_y.s1));
    float  w11 = *((__global float *)(src_addr + stride_y.s1 + stride_x));
    float4 w20 = vload4(0, (__global float *)(src_addr + stride_y.s2));
    float  w21 = *((__global float *)(src_addr + stride_y.s2 + stride_x));
    float4 w30 = vload4(0, (__global float *)(src_addr + stride_y.s3));
    float  w31 = *((__global float *)(src_addr + stride_y.s3 + stride_x));
    float4 w40 = vload4(0, (__global float *)(src_addr + stride_y.s4));
    float  w41 = *((__global float *)(src_addr + stride_y.s4 + stride_x));

    // Transform the 3x3 tile in a 8x8 tile
    float8 out0 = 0.0f;
    float8 out1 = 0.0f;
    float8 out2 = 0.0f;
    float8 out3 = 0.0f;
    float8 out4 = 0.0f;
    float8 out5 = 0.0f;
    float8 out6 = 0.0f;
    float8 out7 = 0.0f;

    // Row 0
    out0.s0 = w00.s0;
    out0.s1 = -2.f * (w00.s0 + w00.s1 + w00.s2 + w00.s3 + w01) / 9.f;
    out0.s2 = -2.f * (w00.s0 - w00.s1 + w00.s2 - w00.s3 + w01) / 9.f;
    out0.s3 = (w00.s0 + 2.f * w00.s1 + 4.f * w00.s2 + 8.f * w00.s3 + 16.f * w01) / 90.f;
    out0.s4 = (w00.s0 - 2.f * w00.s1 + 4.f * w00.s2 - 8.f * w00.s3 + 16.f * w01) / 90.f;
    out0.s5 = (16.f * w00.s0 + 8.f * w00.s1 + 4.f * w00.s2 + 2.f * w00.s3 + w01) / 180.f;
    out0.s6 = (16.f * w00.s0 - 8.f * w00.s1 + 4.f * w00.s2 - 2.f * w00.s3 + w01) / 180.f;
    out0.s7 = w01;

    // Row 1
    out1.s0 = -2.f * (w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) / 9.f;
    out1.s1 = 4.f * ((w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) + (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) +
                     (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + (w01 + w11 + w21 + w31 + w41)) / 81.f;
    out1.s2 = 4.f * ((w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) - (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) -
                     (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + (w01 + w11 + w21 + w31 + w41)) / 81.f;
    out1.s3 = -((w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) + 2.f * (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + 4.f * (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) + 8.f *
                (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + 16.f * (w01 + w11 + w21 + w31 + w41)) / 405.f;
    out1.s4 = -((w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) - 2.f * (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + 4.f * (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) - 8.f *
                (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + 16.f * (w01 + w11 + w21 + w31 + w41)) / 405.f;
    out1.s5 = -(16.f * (w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) + 8.f * (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + 4.f * (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) + 2.f *
                (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + (w01 + w11 + w21 + w31 + w41)) / 810.f;
    out1.s6 = -(16.f * (w00.s0 + w10.s0 + w20.s0 + w30.s0 + w40.s0) - 8.f * (w00.s1 + w10.s1 + w20.s1 + w30.s1 + w40.s1) + 4.f * (w00.s2 + w10.s2 + w20.s2 + w30.s2 + w40.s2) - 2.f *
                (w00.s3 + w10.s3 + w20.s3 + w30.s3 + w40.s3) + (w01 + w11 + w21 + w31 + w41)) / 810.f;
    out1.s7 = -2.f * (w01 + w11 + w21 + w31 + w41) / 9.f;

    // Row 2
    out2.s0 = -2.f * (w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) / 9.f;
    out2.s1 = 4.f * ((w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) + (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) +
                     (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + (w01 - w11 + w21 - w31 + w41)) / 81.f;
    out2.s2 = 4.f * ((w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) - (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) -
                     (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + (w01 - w11 + w21 - w31 + w41)) / 81.f;
    out2.s3 = -((w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) + 2.f * (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + 4.f * (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) + 8.f *
                (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + 16.f * (w01 - w11 + w21 - w31 + w41)) / 405.f;
    out2.s4 = -((w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) - 2.f * (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + 4.f * (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) - 8.f *
                (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + 16.f * (w01 - w11 + w21 - w31 + w41)) / 405.f;
    out2.s5 = -(16.f * (w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) + 8.f * (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + 4.f * (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) + 2.f *
                (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + (w01 - w11 + w21 - w31 + w41)) / 810.f;
    out2.s6 = -(16.f * (w00.s0 - w10.s0 + w20.s0 - w30.s0 + w40.s0) - 8.f * (w00.s1 - w10.s1 + w20.s1 - w30.s1 + w40.s1) + 4.f * (w00.s2 - w10.s2 + w20.s2 - w30.s2 + w40.s2) - 2.f *
                (w00.s3 - w10.s3 + w20.s3 - w30.s3 + w40.s3) + (w01 - w11 + w21 - w31 + w41)) / 810.f;
    out2.s7 = -2.f * (w01 - w11 + w21 - w31 + w41) / 9.f;

    // Row 3
    out3.s0 = (w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) / 90.f;
    out3.s1 = -((w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) + (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) +
                (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) + (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) +
                (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 405.f;
    out3.s2 = -((w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) - (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) +
                (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) - (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) +
                (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 405.f;
    out3.s3 = ((w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) + 2.f * (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) + 8.f * (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) + 16.f *
               (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 8100.f;
    out3.s4 = ((w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) - 2.f * (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) - 8.f * (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) + 16.f *
               (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 8100.f;
    out3.s5 = (16.f * (w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) + 8.f * (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) + 2.f * (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) +
               (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 16200.f;
    out3.s6 = (16.f * (w00.s0 + 2.f * w10.s0 + 4.f * w20.s0 + 8.f * w30.s0 + 16.f * w40.s0) - 8.f * (w00.s1 + 2.f * w10.s1 + 4.f * w20.s1 + 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 + 2.f * w10.s2 + 4.f * w20.s2 + 8.f * w30.s2 + 16.f * w40.s2) - 2.f * (w00.s3 + 2.f * w10.s3 + 4.f * w20.s3 + 8.f * w30.s3 + 16.f * w40.s3) +
               (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41)) / 16200.f;
    out3.s7 = (w01 + 2.f * w11 + 4.f * w21 + 8.f * w31 + 16.f * w41) / 90.f;

    // Row 4
    out4.s0 = (w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) / 90.f;
    out4.s1 = -((w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) + (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) +
                (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) + (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) +
                (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 405.f;
    out4.s2 = -((w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) - (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) +
                (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) - (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) +
                (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 405.f;
    out4.s3 = ((w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) + 2.f * (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) + 8.f * (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) + 16.f *
               (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 8100.f;
    out4.s4 = ((w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) - 2.f * (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) - 8.f * (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) + 16.f *
               (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 8100.f;
    out4.s5 = (16.f * (w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) + 8.f * (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) + 2.f * (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) +
               (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 16200.f;
    out4.s6 = (16.f * (w00.s0 - 2.f * w10.s0 + 4.f * w20.s0 - 8.f * w30.s0 + 16.f * w40.s0) - 8.f * (w00.s1 - 2.f * w10.s1 + 4.f * w20.s1 - 8.f * w30.s1 + 16.f * w40.s1) + 4.f *
               (w00.s2 - 2.f * w10.s2 + 4.f * w20.s2 - 8.f * w30.s2 + 16.f * w40.s2) - 2.f * (w00.s3 - 2.f * w10.s3 + 4.f * w20.s3 - 8.f * w30.s3 + 16.f * w40.s3) +
               (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41)) / 16200.f;
    out4.s7 = (w01 - 2.f * w11 + 4.f * w21 - 8.f * w31 + 16.f * w41) / 90.f;

    // Row 5
    out5.s0 = (16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) / 180.f;
    out5.s1 = -((16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) + (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s1 + w40.s1) +
                (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) + (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) +
                (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 810.f;
    out5.s2 = -((16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) - (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s1 + w40.s1) +
                (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) - (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) +
                (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 810.f;
    out5.s3 = ((16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) + 2.f * (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) + 8.f * (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) + 16.f *
               (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 16200.f;
    out5.s4 = ((16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) - 2.f * (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) - 8.f * (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) + 16.f *
               (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 16200.f;
    out5.s5 = (16.f * (16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) + 8.f * (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) + 2.f * (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) +
               (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 32400.f;
    out5.s6 = (16.f * (16.f * w00.s0 + 8.f * w10.s0 + 4.f * w20.s0 + 2.f * w30.s0 + w40.s0) - 8.f * (16.f * w00.s1 + 8.f * w10.s1 + 4.f * w20.s1 + 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 + 8.f * w10.s2 + 4.f * w20.s2 + 2.f * w30.s2 + w40.s2) - 2.f * (16.f * w00.s3 + 8.f * w10.s3 + 4.f * w20.s3 + 2.f * w30.s3 + w40.s3) +
               (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41)) / 32400.f;
    out5.s7 = (16.f * w01 + 8.f * w11 + 4.f * w21 + 2.f * w31 + w41) / 180.f;

    // Row 6
    out6.s0 = (16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) / 180.f;
    out6.s1 = -((16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) + (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s1 + w40.s1) +
                (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) + (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) +
                (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 810.f;
    out6.s2 = -((16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) - (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s1 + w40.s1) +
                (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) - (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) +
                (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 810.f;
    out6.s3 = ((16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) + 2.f * (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) + 8.f * (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) + 16.f *
               (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 16200.f;
    out6.s4 = ((16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) - 2.f * (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) - 8.f * (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) + 16.f *
               (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 16200.f;
    out6.s5 = (16.f * (16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) + 8.f * (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) + 2.f * (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) +
               (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 32400.f;
    out6.s6 = (16.f * (16.f * w00.s0 - 8.f * w10.s0 + 4.f * w20.s0 - 2.f * w30.s0 + w40.s0) - 8.f * (16.f * w00.s1 - 8.f * w10.s1 + 4.f * w20.s1 - 2.f * w30.s0 + w40.s1) + 4.f *
               (16.f * w00.s2 - 8.f * w10.s2 + 4.f * w20.s2 - 2.f * w30.s2 + w40.s2) - 2.f * (16.f * w00.s3 - 8.f * w10.s3 + 4.f * w20.s3 - 2.f * w30.s3 + w40.s3) +
               (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41)) / 32400.f;
    out6.s7 = (16.f * w01 - 8.f * w11 + 4.f * w21 - 2.f * w31 + w41) / 180.f;

    // Row 7
    out7.s0 = w40.s0;
    out7.s1 = -2.f * (w40.s0 + w40.s1 + w40.s2 + w40.s3 + w41) / 9.f;
    out7.s2 = -2.f * (w40.s0 - w40.s1 + w40.s2 - w40.s3 + w41) / 9.f;
    out7.s3 = (w40.s0 + 2.f * w40.s1 + 4.f * w40.s2 + 8.f * w40.s3 + 16.f * w41) / 90.f;
    out7.s4 = (w40.s0 - 2.f * w40.s1 + 4.f * w40.s2 - 8.f * w40.s3 + 16.f * w41) / 90.f;
    out7.s5 = (16.f * w40.s0 + 8.f * w40.s1 + 4.f * w40.s2 + 2.f * w40.s3 + w41) / 180.f;
    out7.s6 = (16.f * w40.s0 - 8.f * w40.s1 + 4.f * w40.s2 - 2.f * w40.s3 + w41) / 180.f;
    out7.s7 = w41;

    int z  = get_global_id(2);
    int x0 = z / NUM_CHANNELS; // idx filter
    int y0 = z % NUM_CHANNELS; // idx channel

    // Get output address
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x0 * dst_stride_x + y0 * dst_stride_y;

    // Store the 64 values across the 64 channels
    *(__global float *)(dst_addr + 0 * dst_stride_z)  = out0.s0;
    *(__global float *)(dst_addr + 1 * dst_stride_z)  = out0.s1;
    *(__global float *)(dst_addr + 2 * dst_stride_z)  = out0.s2;
    *(__global float *)(dst_addr + 3 * dst_stride_z)  = out0.s3;
    *(__global float *)(dst_addr + 4 * dst_stride_z)  = out0.s4;
    *(__global float *)(dst_addr + 5 * dst_stride_z)  = out0.s5;
    *(__global float *)(dst_addr + 6 * dst_stride_z)  = out0.s6;
    *(__global float *)(dst_addr + 7 * dst_stride_z)  = out0.s7;
    *(__global float *)(dst_addr + 8 * dst_stride_z)  = out1.s0;
    *(__global float *)(dst_addr + 9 * dst_stride_z)  = out1.s1;
    *(__global float *)(dst_addr + 10 * dst_stride_z) = out1.s2;
    *(__global float *)(dst_addr + 11 * dst_stride_z) = out1.s3;
    *(__global float *)(dst_addr + 12 * dst_stride_z) = out1.s4;
    *(__global float *)(dst_addr + 13 * dst_stride_z) = out1.s5;
    *(__global float *)(dst_addr + 14 * dst_stride_z) = out1.s6;
    *(__global float *)(dst_addr + 15 * dst_stride_z) = out1.s7;
    *(__global float *)(dst_addr + 16 * dst_stride_z) = out2.s0;
    *(__global float *)(dst_addr + 17 * dst_stride_z) = out2.s1;
    *(__global float *)(dst_addr + 18 * dst_stride_z) = out2.s2;
    *(__global float *)(dst_addr + 19 * dst_stride_z) = out2.s3;
    *(__global float *)(dst_addr + 20 * dst_stride_z) = out2.s4;
    *(__global float *)(dst_addr + 21 * dst_stride_z) = out2.s5;
    *(__global float *)(dst_addr + 22 * dst_stride_z) = out2.s6;
    *(__global float *)(dst_addr + 23 * dst_stride_z) = out2.s7;
    *(__global float *)(dst_addr + 24 * dst_stride_z) = out3.s0;
    *(__global float *)(dst_addr + 25 * dst_stride_z) = out3.s1;
    *(__global float *)(dst_addr + 26 * dst_stride_z) = out3.s2;
    *(__global float *)(dst_addr + 27 * dst_stride_z) = out3.s3;
    *(__global float *)(dst_addr + 28 * dst_stride_z) = out3.s4;
    *(__global float *)(dst_addr + 29 * dst_stride_z) = out3.s5;
    *(__global float *)(dst_addr + 30 * dst_stride_z) = out3.s6;
    *(__global float *)(dst_addr + 31 * dst_stride_z) = out3.s7;
    *(__global float *)(dst_addr + 32 * dst_stride_z) = out4.s0;
    *(__global float *)(dst_addr + 33 * dst_stride_z) = out4.s1;
    *(__global float *)(dst_addr + 34 * dst_stride_z) = out4.s2;
    *(__global float *)(dst_addr + 35 * dst_stride_z) = out4.s3;
    *(__global float *)(dst_addr + 36 * dst_stride_z) = out4.s4;
    *(__global float *)(dst_addr + 37 * dst_stride_z) = out4.s5;
    *(__global float *)(dst_addr + 38 * dst_stride_z) = out4.s6;
    *(__global float *)(dst_addr + 39 * dst_stride_z) = out4.s7;
    *(__global float *)(dst_addr + 40 * dst_stride_z) = out5.s0;
    *(__global float *)(dst_addr + 41 * dst_stride_z) = out5.s1;
    *(__global float *)(dst_addr + 42 * dst_stride_z) = out5.s2;
    *(__global float *)(dst_addr + 43 * dst_stride_z) = out5.s3;
    *(__global float *)(dst_addr + 44 * dst_stride_z) = out5.s4;
    *(__global float *)(dst_addr + 45 * dst_stride_z) = out5.s5;
    *(__global float *)(dst_addr + 46 * dst_stride_z) = out5.s6;
    *(__global float *)(dst_addr + 47 * dst_stride_z) = out5.s7;
    *(__global float *)(dst_addr + 48 * dst_stride_z) = out6.s0;
    *(__global float *)(dst_addr + 49 * dst_stride_z) = out6.s1;
    *(__global float *)(dst_addr + 50 * dst_stride_z) = out6.s2;
    *(__global float *)(dst_addr + 51 * dst_stride_z) = out6.s3;
    *(__global float *)(dst_addr + 52 * dst_stride_z) = out6.s4;
    *(__global float *)(dst_addr + 53 * dst_stride_z) = out6.s5;
    *(__global float *)(dst_addr + 54 * dst_stride_z) = out6.s6;
    *(__global float *)(dst_addr + 55 * dst_stride_z) = out6.s7;
    *(__global float *)(dst_addr + 56 * dst_stride_z) = out7.s0;
    *(__global float *)(dst_addr + 57 * dst_stride_z) = out7.s1;
    *(__global float *)(dst_addr + 58 * dst_stride_z) = out7.s2;
    *(__global float *)(dst_addr + 59 * dst_stride_z) = out7.s3;
    *(__global float *)(dst_addr + 60 * dst_stride_z) = out7.s4;
    *(__global float *)(dst_addr + 61 * dst_stride_z) = out7.s5;
    *(__global float *)(dst_addr + 62 * dst_stride_z) = out7.s6;
    *(__global float *)(dst_addr + 63 * dst_stride_z) = out7.s7;
}
#endif // defined(NUM_CHANNELS)

#if defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP)
/** This OpenCL kernel computes the input transform when the kernel size is 3x3 and the output tile is 2x2
 *
 * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
 * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
 *
 * @param[in] src_ptr                           Pointer to the source image. Supported data types: F32
 * @param[in] src_stride_x                      Stride of the source image in X dimension (in bytes)
 * @param[in] src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] src_stride_y                      Stride of the source image in Y dimension (in bytes)
 * @param[in] src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
 * @param[in] src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in] src_step_z                        src_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_ptr                           Pointer to the destination tensor. Supported data types: as @p src_ptr
 * @param[in] dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in] dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in] dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in] dst_step_z                        dst_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_input_transform_2x2_3x3_stepz1_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    int x = get_global_id(0);
    int y = get_global_id(1);
    int z = get_global_id(2);

    // Compute input address
    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 2 * src_stride_x + y * 2 * src_stride_y + z * src_stride_z;

    src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y);

    float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
    float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
    float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
    float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));

    float4 tmp0 = in_row0 - in_row2;
    float4 tmp1 = in_row1 + in_row2;
    float4 tmp2 = in_row2 - in_row1;
    float4 tmp3 = in_row1 - in_row3;

    float out00 = tmp0.s0 - tmp0.s2;
    float out01 = tmp0.s1 + tmp0.s2;
    float out02 = tmp0.s2 - tmp0.s1;
    float out03 = tmp0.s1 - tmp0.s3;

    float out10 = tmp1.s0 - tmp1.s2;
    float out11 = tmp1.s1 + tmp1.s2;
    float out12 = tmp1.s2 - tmp1.s1;
    float out13 = tmp1.s1 - tmp1.s3;

    float out20 = tmp2.s0 - tmp2.s2;
    float out21 = tmp2.s1 + tmp2.s2;
    float out22 = tmp2.s2 - tmp2.s1;
    float out23 = tmp2.s1 - tmp2.s3;

    float out30 = tmp3.s0 - tmp3.s2;
    float out31 = tmp3.s1 + tmp3.s2;
    float out32 = tmp3.s2 - tmp3.s1;
    float out33 = tmp3.s1 - tmp3.s3;

    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y;

    *((__global float *)(dst_addr + 0 * dst_stride_z))  = out00;
    *((__global float *)(dst_addr + 1 * dst_stride_z))  = out01;
    *((__global float *)(dst_addr + 2 * dst_stride_z))  = out02;
    *((__global float *)(dst_addr + 3 * dst_stride_z))  = out03;
    *((__global float *)(dst_addr + 4 * dst_stride_z))  = out10;
    *((__global float *)(dst_addr + 5 * dst_stride_z))  = out11;
    *((__global float *)(dst_addr + 6 * dst_stride_z))  = out12;
    *((__global float *)(dst_addr + 7 * dst_stride_z))  = out13;
    *((__global float *)(dst_addr + 8 * dst_stride_z))  = out20;
    *((__global float *)(dst_addr + 9 * dst_stride_z))  = out21;
    *((__global float *)(dst_addr + 10 * dst_stride_z)) = out22;
    *((__global float *)(dst_addr + 11 * dst_stride_z)) = out23;
    *((__global float *)(dst_addr + 12 * dst_stride_z)) = out30;
    *((__global float *)(dst_addr + 13 * dst_stride_z)) = out31;
    *((__global float *)(dst_addr + 14 * dst_stride_z)) = out32;
    *((__global float *)(dst_addr + 15 * dst_stride_z)) = out33;
}

/** This OpenCL kernel computes the input transform when the kernel size is 3x3, the output tile is 2x2 and the number of channels is multiple of 2
 *
 * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
 * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
 *
 * @param[in] src_ptr                           Pointer to the source image. Supported data types: F32
 * @param[in] src_stride_x                      Stride of the source image in X dimension (in bytes)
 * @param[in] src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] src_stride_y                      Stride of the source image in Y dimension (in bytes)
 * @param[in] src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
 * @param[in] src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in] src_step_z                        src_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_ptr                           Pointer to the destination tensor. Supported data types: as @p src_ptr
 * @param[in] dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in] dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in] dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in] dst_step_z                        dst_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_input_transform_2x2_3x3_stepz2_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    int x = get_global_id(0);
    int y = get_global_id(1);
    int z = get_global_id(2) * 2;

    // Compute input address
    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 2 * src_stride_x + y * 2 * src_stride_y + z * src_stride_z;

    src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y);

    float4 in_row0 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
    float4 in_row1 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
    float4 in_row2 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
    float4 in_row3 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));

    src_addr += src_stride_z;
    float4 in_row4 = vload4(0, (__global float *)(src_addr + 0 * src_stride_y));
    float4 in_row5 = vload4(0, (__global float *)(src_addr + 1 * src_stride_y));
    float4 in_row6 = vload4(0, (__global float *)(src_addr + 2 * src_stride_y));
    float4 in_row7 = vload4(0, (__global float *)(src_addr + 3 * src_stride_y));

    float4 tmp0 = in_row0 - in_row2;
    float4 tmp1 = in_row1 + in_row2;
    float4 tmp2 = in_row2 - in_row1;
    float4 tmp3 = in_row1 - in_row3;

    float4 tmp4 = in_row4 - in_row6;
    float4 tmp5 = in_row5 + in_row6;
    float4 tmp6 = in_row6 - in_row5;
    float4 tmp7 = in_row5 - in_row7;

    float2 out00 = (float2)(tmp0.s0 - tmp0.s2, tmp4.s0 - tmp4.s2);
    float2 out01 = (float2)(tmp0.s1 + tmp0.s2, tmp4.s1 + tmp4.s2);
    float2 out02 = (float2)(tmp0.s2 - tmp0.s1, tmp4.s2 - tmp4.s1);
    float2 out03 = (float2)(tmp0.s1 - tmp0.s3, tmp4.s1 - tmp4.s3);

    float2 out10 = (float2)(tmp1.s0 - tmp1.s2, tmp5.s0 - tmp5.s2);
    float2 out11 = (float2)(tmp1.s1 + tmp1.s2, tmp5.s1 + tmp5.s2);
    float2 out12 = (float2)(tmp1.s2 - tmp1.s1, tmp5.s2 - tmp5.s1);
    float2 out13 = (float2)(tmp1.s1 - tmp1.s3, tmp5.s1 - tmp5.s3);

    float2 out20 = (float2)(tmp2.s0 - tmp2.s2, tmp6.s0 - tmp6.s2);
    float2 out21 = (float2)(tmp2.s1 + tmp2.s2, tmp6.s1 + tmp6.s2);
    float2 out22 = (float2)(tmp2.s2 - tmp2.s1, tmp6.s2 - tmp6.s1);
    float2 out23 = (float2)(tmp2.s1 - tmp2.s3, tmp6.s1 - tmp6.s3);

    float2 out30 = (float2)(tmp3.s0 - tmp3.s2, tmp7.s0 - tmp7.s2);
    float2 out31 = (float2)(tmp3.s1 + tmp3.s2, tmp7.s1 + tmp7.s2);
    float2 out32 = (float2)(tmp3.s2 - tmp3.s1, tmp7.s2 - tmp7.s1);
    float2 out33 = (float2)(tmp3.s1 - tmp3.s3, tmp7.s1 - tmp7.s3);

    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y;

    vstore2(out00, 0, (__global float *)(dst_addr + 0 * dst_stride_z));
    vstore2(out01, 0, (__global float *)(dst_addr + 1 * dst_stride_z));
    vstore2(out02, 0, (__global float *)(dst_addr + 2 * dst_stride_z));
    vstore2(out03, 0, (__global float *)(dst_addr + 3 * dst_stride_z));
    vstore2(out10, 0, (__global float *)(dst_addr + 4 * dst_stride_z));
    vstore2(out11, 0, (__global float *)(dst_addr + 5 * dst_stride_z));
    vstore2(out12, 0, (__global float *)(dst_addr + 6 * dst_stride_z));
    vstore2(out13, 0, (__global float *)(dst_addr + 7 * dst_stride_z));
    vstore2(out20, 0, (__global float *)(dst_addr + 8 * dst_stride_z));
    vstore2(out21, 0, (__global float *)(dst_addr + 9 * dst_stride_z));
    vstore2(out22, 0, (__global float *)(dst_addr + 10 * dst_stride_z));
    vstore2(out23, 0, (__global float *)(dst_addr + 11 * dst_stride_z));
    vstore2(out30, 0, (__global float *)(dst_addr + 12 * dst_stride_z));
    vstore2(out31, 0, (__global float *)(dst_addr + 13 * dst_stride_z));
    vstore2(out32, 0, (__global float *)(dst_addr + 14 * dst_stride_z));
    vstore2(out33, 0, (__global float *)(dst_addr + 15 * dst_stride_z));
}

#define OUTPUT_ROW_4x4_5x5(out, tmp, comm_fact)                     \
    ({                                                              \
        comm_fact.s0 = tmp.s2 - 4.25f * tmp.s4 + tmp.s6;            \
        comm_fact.s1 = tmp.s1 - 4.25f * tmp.s3 + tmp.s5;            \
        comm_fact.s2 = 2.5f * tmp.s3;                               \
        comm_fact.s3 = 0.5f * tmp.s1 + 2.f * tmp.s5 - comm_fact.s2; \
        comm_fact.s4 = 0.25f * tmp.s2 - 1.25f * tmp.s4 + tmp.s6;    \
        comm_fact.s5 = 4.f * tmp.s2 + tmp.s6 - 5.f * tmp.s4;        \
        comm_fact.s6 = 2.f * tmp.s1 + 0.5f * tmp.s5 - comm_fact.s2; \
        \
        out.s0 = tmp.s0 - tmp.s6 + 5.25f * tmp.s4 - 5.25f * tmp.s2; \
        out.s1 = comm_fact.s0 + comm_fact.s1;                       \
        out.s2 = comm_fact.s0 - comm_fact.s1;                       \
        out.s3 = comm_fact.s3 + comm_fact.s4;                       \
        out.s4 = comm_fact.s4 - comm_fact.s3;                       \
        out.s5 = comm_fact.s5 + comm_fact.s6;                       \
        out.s6 = comm_fact.s5 - comm_fact.s6;                       \
        out.s7 = tmp.s7 - tmp.s1 + 5.25f * tmp.s3 - 5.25f * tmp.s5; \
    })

/** This OpenCL kernel computes the input transform when the kernel size is 5x5 and the output tile is 4x4
 *
 * @note The number of tiles in the x axis must be passed at compile time using -DNUM_TILES_X (i.e.-DNUM_TILES_X=5).
 * @note The pad left and pad top must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (i.e.-DPAD_LEFT=1 and -DPAD_TOP=0).
 *
 * @param[in] src_ptr                           Pointer to the source image. Supported data types: F32
 * @param[in] src_stride_x                      Stride of the source image in X dimension (in bytes)
 * @param[in] src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] src_stride_y                      Stride of the source image in Y dimension (in bytes)
 * @param[in] src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
 * @param[in] src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in] src_step_z                        src_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_ptr                           Pointer to the destination tensor. Supported data types: as @p src_ptr
 * @param[in] dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in] dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in] dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in] dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in] dst_step_z                        dst_stride_z * number of elements along Y processed per workitem(in bytes)
 * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_input_transform_4x4_5x5_stepz1_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst))
{
    int x = get_global_id(0);
    int y = get_global_id(1);
    int z = get_global_id(2);

    // Compute input address
    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x * 4 * src_stride_x + y * 4 * src_stride_y + z * src_stride_z;

    src_addr = src_addr - ((int)PAD_LEFT * src_stride_x) - ((int)PAD_TOP * src_stride_y);

    // Load 8x8 input tile
    const float8 in_row0 = vload8(0, (__global float *)(src_addr + 0 * src_stride_y));
    const float8 in_row1 = vload8(0, (__global float *)(src_addr + 1 * src_stride_y));
    const float8 in_row2 = vload8(0, (__global float *)(src_addr + 2 * src_stride_y));
    const float8 in_row3 = vload8(0, (__global float *)(src_addr + 3 * src_stride_y));
    const float8 in_row4 = vload8(0, (__global float *)(src_addr + 4 * src_stride_y));
    const float8 in_row5 = vload8(0, (__global float *)(src_addr + 5 * src_stride_y));
    const float8 in_row6 = vload8(0, (__global float *)(src_addr + 6 * src_stride_y));
    const float8 in_row7 = vload8(0, (__global float *)(src_addr + 7 * src_stride_y));

    // Calculate common factors for intermediate tensor
    float8 comm_fact0 = in_row2 + in_row6 - 4.25f * in_row4;
    float8 comm_fact1 = in_row1 + in_row5 - 4.25f * in_row3;
    float8 comm_fact2 = 0.25f * in_row2 - 1.25f * in_row4 + in_row6;

    // Calculate intermediate tensor and reuse common factor vectors
    const float8 tmp0 = in_row0 - in_row6 + 5.25f * in_row4 - 5.25f * in_row2;
    const float8 tmp1 = comm_fact0 + comm_fact1;
    const float8 tmp2 = comm_fact0 - comm_fact1;

    comm_fact0 = 2.5f * in_row3;
    comm_fact1 = 0.5f * in_row1 - comm_fact0 + 2.f * in_row5;

    const float8 tmp3 = comm_fact1 + comm_fact2;
    const float8 tmp4 = comm_fact2 - comm_fact1;

    comm_fact1 = 2.f * in_row1 - comm_fact0 + 0.5f * in_row5;
    comm_fact2 = 4.f * in_row2 - 5.f * in_row4 + in_row6;

    const float8 tmp5 = comm_fact1 + comm_fact2;
    const float8 tmp6 = comm_fact2 - comm_fact1;
    const float8 tmp7 = in_row7 - in_row1 + 5.25f * in_row3 - 5.25f * in_row5;

    // Calculate output rows (reuse comm_fact0 vector)
    float8 out0, out1, out2, out3, out4, out5, out6, out7;

    OUTPUT_ROW_4x4_5x5(out0, tmp0, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out1, tmp1, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out2, tmp2, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out3, tmp3, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out4, tmp4, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out5, tmp5, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out6, tmp6, comm_fact0);
    OUTPUT_ROW_4x4_5x5(out7, tmp7, comm_fact0);

    // Store values across the 64 channels
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + z * dst_stride_x + (x + y * (int)NUM_TILES_X) * dst_stride_y;

    *((__global float *)(dst_addr + 0 * dst_stride_z))  = out0.s0;
    *((__global float *)(dst_addr + 1 * dst_stride_z))  = out0.s1;
    *((__global float *)(dst_addr + 2 * dst_stride_z))  = out0.s2;
    *((__global float *)(dst_addr + 3 * dst_stride_z))  = out0.s3;
    *((__global float *)(dst_addr + 4 * dst_stride_z))  = out0.s4;
    *((__global float *)(dst_addr + 5 * dst_stride_z))  = out0.s5;
    *((__global float *)(dst_addr + 6 * dst_stride_z))  = out0.s6;
    *((__global float *)(dst_addr + 7 * dst_stride_z))  = out0.s7;
    *((__global float *)(dst_addr + 8 * dst_stride_z))  = out1.s0;
    *((__global float *)(dst_addr + 9 * dst_stride_z))  = out1.s1;
    *((__global float *)(dst_addr + 10 * dst_stride_z)) = out1.s2;
    *((__global float *)(dst_addr + 11 * dst_stride_z)) = out1.s3;
    *((__global float *)(dst_addr + 12 * dst_stride_z)) = out1.s4;
    *((__global float *)(dst_addr + 13 * dst_stride_z)) = out1.s5;
    *((__global float *)(dst_addr + 14 * dst_stride_z)) = out1.s6;
    *((__global float *)(dst_addr + 15 * dst_stride_z)) = out1.s7;
    *((__global float *)(dst_addr + 16 * dst_stride_z)) = out2.s0;
    *((__global float *)(dst_addr + 17 * dst_stride_z)) = out2.s1;
    *((__global float *)(dst_addr + 18 * dst_stride_z)) = out2.s2;
    *((__global float *)(dst_addr + 19 * dst_stride_z)) = out2.s3;
    *((__global float *)(dst_addr + 20 * dst_stride_z)) = out2.s4;
    *((__global float *)(dst_addr + 21 * dst_stride_z)) = out2.s5;
    *((__global float *)(dst_addr + 22 * dst_stride_z)) = out2.s6;
    *((__global float *)(dst_addr + 23 * dst_stride_z)) = out2.s7;
    *((__global float *)(dst_addr + 24 * dst_stride_z)) = out3.s0;
    *((__global float *)(dst_addr + 25 * dst_stride_z)) = out3.s1;
    *((__global float *)(dst_addr + 26 * dst_stride_z)) = out3.s2;
    *((__global float *)(dst_addr + 27 * dst_stride_z)) = out3.s3;
    *((__global float *)(dst_addr + 28 * dst_stride_z)) = out3.s4;
    *((__global float *)(dst_addr + 29 * dst_stride_z)) = out3.s5;
    *((__global float *)(dst_addr + 30 * dst_stride_z)) = out3.s6;
    *((__global float *)(dst_addr + 31 * dst_stride_z)) = out3.s7;
    *((__global float *)(dst_addr + 32 * dst_stride_z)) = out4.s0;
    *((__global float *)(dst_addr + 33 * dst_stride_z)) = out4.s1;
    *((__global float *)(dst_addr + 34 * dst_stride_z)) = out4.s2;
    *((__global float *)(dst_addr + 35 * dst_stride_z)) = out4.s3;
    *((__global float *)(dst_addr + 36 * dst_stride_z)) = out4.s4;
    *((__global float *)(dst_addr + 37 * dst_stride_z)) = out4.s5;
    *((__global float *)(dst_addr + 38 * dst_stride_z)) = out4.s6;
    *((__global float *)(dst_addr + 39 * dst_stride_z)) = out4.s7;
    *((__global float *)(dst_addr + 40 * dst_stride_z)) = out5.s0;
    *((__global float *)(dst_addr + 41 * dst_stride_z)) = out5.s1;
    *((__global float *)(dst_addr + 42 * dst_stride_z)) = out5.s2;
    *((__global float *)(dst_addr + 43 * dst_stride_z)) = out5.s3;
    *((__global float *)(dst_addr + 44 * dst_stride_z)) = out5.s4;
    *((__global float *)(dst_addr + 45 * dst_stride_z)) = out5.s5;
    *((__global float *)(dst_addr + 46 * dst_stride_z)) = out5.s6;
    *((__global float *)(dst_addr + 47 * dst_stride_z)) = out5.s7;
    *((__global float *)(dst_addr + 48 * dst_stride_z)) = out6.s0;
    *((__global float *)(dst_addr + 49 * dst_stride_z)) = out6.s1;
    *((__global float *)(dst_addr + 50 * dst_stride_z)) = out6.s2;
    *((__global float *)(dst_addr + 51 * dst_stride_z)) = out6.s3;
    *((__global float *)(dst_addr + 52 * dst_stride_z)) = out6.s4;
    *((__global float *)(dst_addr + 53 * dst_stride_z)) = out6.s5;
    *((__global float *)(dst_addr + 54 * dst_stride_z)) = out6.s6;
    *((__global float *)(dst_addr + 55 * dst_stride_z)) = out6.s7;
    *((__global float *)(dst_addr + 56 * dst_stride_z)) = out7.s0;
    *((__global float *)(dst_addr + 57 * dst_stride_z)) = out7.s1;
    *((__global float *)(dst_addr + 58 * dst_stride_z)) = out7.s2;
    *((__global float *)(dst_addr + 59 * dst_stride_z)) = out7.s3;
    *((__global float *)(dst_addr + 60 * dst_stride_z)) = out7.s4;
    *((__global float *)(dst_addr + 61 * dst_stride_z)) = out7.s5;
    *((__global float *)(dst_addr + 62 * dst_stride_z)) = out7.s6;
    *((__global float *)(dst_addr + 63 * dst_stride_z)) = out7.s7;
}
#endif // defined(NUM_TILES_X) && defined(PAD_LEFT) && defined(PAD_TOP)

#if defined(NUM_TILES_X)
/** This OpenCL kernel performs Winograd output transform when the output tile is 2x2, the filter size 3x3 and the data format is NCHW
 *
 * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_output_transform_2x2_3x3_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst)
#if defined(HAS_BIAS)
    ,
    VECTOR_DECLARATION(bias)
#endif // defined(HAS_BIAS)
)
{
    // Each thread stores a 2x2 tile
    Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);

    const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);

    // Load the values across the 16 channels to compose the 4x4 tile
    float d00 = *((__global float *)(src_addr + 0 * src_stride_z));
    float d01 = *((__global float *)(src_addr + 1 * src_stride_z));
    float d02 = *((__global float *)(src_addr + 2 * src_stride_z));
    float d03 = *((__global float *)(src_addr + 3 * src_stride_z));

    float d10 = *((__global float *)(src_addr + 4 * src_stride_z));
    float d11 = *((__global float *)(src_addr + 5 * src_stride_z));
    float d12 = *((__global float *)(src_addr + 6 * src_stride_z));
    float d13 = *((__global float *)(src_addr + 7 * src_stride_z));

    float d20 = *((__global float *)(src_addr + 8 * src_stride_z));
    float d21 = *((__global float *)(src_addr + 9 * src_stride_z));
    float d22 = *((__global float *)(src_addr + 10 * src_stride_z));
    float d23 = *((__global float *)(src_addr + 11 * src_stride_z));

    float d30 = *((__global float *)(src_addr + 12 * src_stride_z));
    float d31 = *((__global float *)(src_addr + 13 * src_stride_z));
    float d32 = *((__global float *)(src_addr + 14 * src_stride_z));
    float d33 = *((__global float *)(src_addr + 15 * src_stride_z));

    // Compute the 2x2 output tile
    float k0 = d01 + d11 + d21;
    float k1 = d02 + d12 + d22;
    float k2 = d11 - d21 - d31;
    float k3 = d12 - d22 - d32;

    // out00 = d00 + d10 + d20 + d01 + d11 + d21 + d02 + d12 + d22
    // out01 = d01 + d11 + d21 - (d02 + d12 + d22) - (d03 + d13 + d23)
    // out10 = d10 - d20 - d30 + (d11 - d21 - d31) + (d12 - d22 - d32)
    // out11 = d11 - d21 - d31 - (d12 - d22 - d32) - (d13 - d23 - d33)

    float out00 = d10;
    float out01 = -d13;
    float out10 = d10;
    float out11 = -d13;

    out00 += d00 + d20 + k0 + k1;
    out01 += k0 - k1 - (d03 + d23);
    out10 += -d20 - d30 + k2 + k3;
    out11 += k2 - k3 + d23 + d33;

    int y_in  = get_global_id(1);
    int x_out = (y_in % NUM_TILES_X) * 2;
    int y_out = (y_in / NUM_TILES_X) * 2;
    int z_out = get_global_id(0);

#if defined(HAS_BIAS)
    // Add bias
    Vector bias = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);

    float b = (float) * ((__global float *)(vector_offset(&bias, z_out)));

    out00 += (float)b;
    out01 += (float)b;
    out10 += (float)b;
    out11 += (float)b;
#endif // defined(HAS_BIAS)

    // Get output address
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * dst_stride_x + y_out * dst_stride_y + z_out * dst_stride_z;

    // Store the 2x2 output tile
    vstore2((float2)(out00, out01), 0, (__global float *)(dst_addr + 0 * dst_stride_y));
    vstore2((float2)(out10, out11), 0, (__global float *)(dst_addr + 1 * dst_stride_y));
}

#define COMPUTE_TMP_COL(col, d0, d1, d2, d3, d4, d5, d6, d7, comm_fact)  \
    ({                                                                   \
        comm_fact.s0 = d1 + d2;                                          \
        comm_fact.s1 = d3 + d4;                                          \
        comm_fact.s2 = d5 + d6;                                          \
        \
        col.s0 = comm_fact.s0 + comm_fact.s1 + 8.f * comm_fact.s2 + d0;  \
        col.s2 = comm_fact.s0 + 4.f * comm_fact.s1 + 2.f * comm_fact.s2; \
        \
        comm_fact.s0 = d1 - d2;                                          \
        comm_fact.s1 = d3 - d4;                                          \
        comm_fact.s2 = d5 - d6;                                          \
        \
        col.s1 = comm_fact.s0 + 2.f * comm_fact.s1 + 4.f * comm_fact.s2; \
        col.s3 = comm_fact.s0 + 8.f * comm_fact.s1 + comm_fact.s2 + d7;  \
    })

/** This OpenCL kernel performs Winograd output transform when the output tile is 4x4, the filter size 5x5 and the data format is NCHW
 *
 * @note The number of tiles along the X direction must be passed at compile time using -DNUM_TILES_X: e.g. -DNUM_TILES_X=16
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F32
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void winograd_output_transform_4x4_5x5_nchw(
    TENSOR3D_DECLARATION(src),
    TENSOR3D_DECLARATION(dst)
#if defined(HAS_BIAS)
    ,
    VECTOR_DECLARATION(bias)
#endif // defined(HAS_BIAS)
)
{
    // Each thread stores a 4x4 tile
    Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);

    const __global uchar *src_addr = tensor3D_offset(&src, 0, 0, 0);

    // Load the values across the 64 channels to compose the 8x8 input tile
    float d00 = *((__global float *)(src_addr + 0 * src_stride_z));
    float d01 = *((__global float *)(src_addr + 1 * src_stride_z));
    float d02 = *((__global float *)(src_addr + 2 * src_stride_z));
    float d03 = *((__global float *)(src_addr + 3 * src_stride_z));
    float d04 = *((__global float *)(src_addr + 4 * src_stride_z));
    float d05 = *((__global float *)(src_addr + 5 * src_stride_z));
    float d06 = *((__global float *)(src_addr + 6 * src_stride_z));
    float d07 = *((__global float *)(src_addr + 7 * src_stride_z));

    float d10 = *((__global float *)(src_addr + 8 * src_stride_z));
    float d11 = *((__global float *)(src_addr + 9 * src_stride_z));
    float d12 = *((__global float *)(src_addr + 10 * src_stride_z));
    float d13 = *((__global float *)(src_addr + 11 * src_stride_z));
    float d14 = *((__global float *)(src_addr + 12 * src_stride_z));
    float d15 = *((__global float *)(src_addr + 13 * src_stride_z));
    float d16 = *((__global float *)(src_addr + 14 * src_stride_z));
    float d17 = *((__global float *)(src_addr + 15 * src_stride_z));

    float d20 = *((__global float *)(src_addr + 16 * src_stride_z));
    float d21 = *((__global float *)(src_addr + 17 * src_stride_z));
    float d22 = *((__global float *)(src_addr + 18 * src_stride_z));
    float d23 = *((__global float *)(src_addr + 19 * src_stride_z));
    float d24 = *((__global float *)(src_addr + 20 * src_stride_z));
    float d25 = *((__global float *)(src_addr + 21 * src_stride_z));
    float d26 = *((__global float *)(src_addr + 22 * src_stride_z));
    float d27 = *((__global float *)(src_addr + 23 * src_stride_z));

    float d30 = *((__global float *)(src_addr + 24 * src_stride_z));
    float d31 = *((__global float *)(src_addr + 25 * src_stride_z));
    float d32 = *((__global float *)(src_addr + 26 * src_stride_z));
    float d33 = *((__global float *)(src_addr + 27 * src_stride_z));
    float d34 = *((__global float *)(src_addr + 28 * src_stride_z));
    float d35 = *((__global float *)(src_addr + 29 * src_stride_z));
    float d36 = *((__global float *)(src_addr + 30 * src_stride_z));
    float d37 = *((__global float *)(src_addr + 31 * src_stride_z));

    float d40 = *((__global float *)(src_addr + 32 * src_stride_z));
    float d41 = *((__global float *)(src_addr + 33 * src_stride_z));
    float d42 = *((__global float *)(src_addr + 34 * src_stride_z));
    float d43 = *((__global float *)(src_addr + 35 * src_stride_z));
    float d44 = *((__global float *)(src_addr + 36 * src_stride_z));
    float d45 = *((__global float *)(src_addr + 37 * src_stride_z));
    float d46 = *((__global float *)(src_addr + 38 * src_stride_z));
    float d47 = *((__global float *)(src_addr + 39 * src_stride_z));

    float d50 = *((__global float *)(src_addr + 40 * src_stride_z));
    float d51 = *((__global float *)(src_addr + 41 * src_stride_z));
    float d52 = *((__global float *)(src_addr + 42 * src_stride_z));
    float d53 = *((__global float *)(src_addr + 43 * src_stride_z));
    float d54 = *((__global float *)(src_addr + 44 * src_stride_z));
    float d55 = *((__global float *)(src_addr + 45 * src_stride_z));
    float d56 = *((__global float *)(src_addr + 46 * src_stride_z));
    float d57 = *((__global float *)(src_addr + 47 * src_stride_z));

    float d60 = *((__global float *)(src_addr + 48 * src_stride_z));
    float d61 = *((__global float *)(src_addr + 49 * src_stride_z));
    float d62 = *((__global float *)(src_addr + 50 * src_stride_z));
    float d63 = *((__global float *)(src_addr + 51 * src_stride_z));
    float d64 = *((__global float *)(src_addr + 52 * src_stride_z));
    float d65 = *((__global float *)(src_addr + 53 * src_stride_z));
    float d66 = *((__global float *)(src_addr + 54 * src_stride_z));
    float d67 = *((__global float *)(src_addr + 55 * src_stride_z));

    float d70 = *((__global float *)(src_addr + 56 * src_stride_z));
    float d71 = *((__global float *)(src_addr + 57 * src_stride_z));
    float d72 = *((__global float *)(src_addr + 58 * src_stride_z));
    float d73 = *((__global float *)(src_addr + 59 * src_stride_z));
    float d74 = *((__global float *)(src_addr + 60 * src_stride_z));
    float d75 = *((__global float *)(src_addr + 61 * src_stride_z));
    float d76 = *((__global float *)(src_addr + 62 * src_stride_z));
    float d77 = *((__global float *)(src_addr + 63 * src_stride_z));

    // Compute the 8x4 intermediate tensor
    float4 comm_fact0, comm_fact1, comm_fact2;
    float4 tmp_col0, tmp_col1, tmp_col2, tmp_col3, tmp_col4, tmp_col5, tmp_col6, tmp_col7;

    COMPUTE_TMP_COL(tmp_col0, d00, d10, d20, d30, d40, d50, d60, d70, comm_fact0);
    COMPUTE_TMP_COL(tmp_col1, d01, d11, d21, d31, d41, d51, d61, d71, comm_fact0);
    COMPUTE_TMP_COL(tmp_col2, d02, d12, d22, d32, d42, d52, d62, d72, comm_fact0);
    COMPUTE_TMP_COL(tmp_col3, d03, d13, d23, d33, d43, d53, d63, d73, comm_fact0);
    COMPUTE_TMP_COL(tmp_col4, d04, d14, d24, d34, d44, d54, d64, d74, comm_fact0);
    COMPUTE_TMP_COL(tmp_col5, d05, d15, d25, d35, d45, d55, d65, d75, comm_fact0);
    COMPUTE_TMP_COL(tmp_col6, d06, d16, d26, d36, d46, d56, d66, d76, comm_fact0);
    COMPUTE_TMP_COL(tmp_col7, d07, d17, d27, d37, d47, d57, d67, d77, comm_fact0);

    // Compute the 4x4 output tile
    comm_fact0 = tmp_col1 + tmp_col2;
    comm_fact1 = tmp_col3 + tmp_col4;
    comm_fact2 = tmp_col5 + tmp_col6;

    float4 out_col0 = comm_fact0 + comm_fact1 + 8.f * comm_fact2 + tmp_col0;
    float4 out_col2 = comm_fact0 + 4.f * comm_fact1 + 2.f * comm_fact2;

    comm_fact0 = tmp_col1 - tmp_col2;
    comm_fact1 = tmp_col3 - tmp_col4;
    comm_fact2 = tmp_col5 - tmp_col6;

    float4 out_col1 = comm_fact0 + 2.f * comm_fact1 + 4.f * comm_fact2;
    float4 out_col3 = comm_fact0 + 8.f * comm_fact1 + comm_fact2 + tmp_col7;

    int y_in  = get_global_id(1);
    int x_out = (y_in % NUM_TILES_X) * 4;
    int y_out = (y_in / NUM_TILES_X) * 4;
    int z_out = get_global_id(0);

#if defined(HAS_BIAS)
    // Add bias
    Vector bias = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bias);

    float b = (float) * ((__global float *)(vector_offset(&bias, z_out)));

    out_col0 += (float4)b;
    out_col1 += (float4)b;
    out_col2 += (float4)b;
    out_col3 += (float4)b;
#endif // defined(HAS_BIAS)

    // Get output address
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_out * dst_stride_x + y_out * dst_stride_y + z_out * dst_stride_z;

    // Store the 4x4 output tile
    *(__global float *)(dst_addr + 0 * dst_stride_x + 0 * dst_stride_y) = out_col0.s0;
    *(__global float *)(dst_addr + 1 * dst_stride_x + 0 * dst_stride_y) = out_col1.s0;
    *(__global float *)(dst_addr + 2 * dst_stride_x + 0 * dst_stride_y) = out_col2.s0;
    *(__global float *)(dst_addr + 3 * dst_stride_x + 0 * dst_stride_y) = out_col3.s0;
    *(__global float *)(dst_addr + 0 * dst_stride_x + 1 * dst_stride_y) = out_col0.s1;
    *(__global float *)(dst_addr + 1 * dst_stride_x + 1 * dst_stride_y) = out_col1.s1;
    *(__global float *)(dst_addr + 2 * dst_stride_x + 1 * dst_stride_y) = out_col2.s1;
    *(__global float *)(dst_addr + 3 * dst_stride_x + 1 * dst_stride_y) = out_col3.s1;
    *(__global float *)(dst_addr + 0 * dst_stride_x + 2 * dst_stride_y) = out_col0.s2;
    *(__global float *)(dst_addr + 1 * dst_stride_x + 2 * dst_stride_y) = out_col1.s2;
    *(__global float *)(dst_addr + 2 * dst_stride_x + 2 * dst_stride_y) = out_col2.s2;
    *(__global float *)(dst_addr + 3 * dst_stride_x + 2 * dst_stride_y) = out_col3.s2;
    *(__global float *)(dst_addr + 0 * dst_stride_x + 3 * dst_stride_y) = out_col0.s3;
    *(__global float *)(dst_addr + 1 * dst_stride_x + 3 * dst_stride_y) = out_col1.s3;
    *(__global float *)(dst_addr + 2 * dst_stride_x + 3 * dst_stride_y) = out_col2.s3;
    *(__global float *)(dst_addr + 3 * dst_stride_x + 3 * dst_stride_y) = out_col3.s3;
}
#endif // defined(NUM_TILES_X)