aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/roi_align_layer_quantized.cl
blob: d5c9a0d9bf7b949fbfd0eac7234255d983aadca4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*
 * Copyright (c) 2019-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers_asymm.h"

// This specifies the value to shift the result of roi_dims / pooled_dims before ceiling.
// It is close to the epsilon machine (for a floating point system, x and x+EPS are the same number).
#define EPS_GRID 0.00001f

#if defined(DATA_TYPE) && defined(POOLED_DIM_X) && defined(POOLED_DIM_Y) && defined(MAX_DIM_X) && defined(MAX_DIM_Y) && defined(MAX_DIM_Z) && defined(SPATIAL_SCALE) && defined(OFFSET_IN) && defined(OFFSET_OUT) && defined(SCALE_IN) && defined(SCALE_OUT) && defined(OFFSET_ROIS) && defined(SCALE_ROIS) // Check for compile time constants

/** Performs a roi align on a single output pixel.
 *
 * @param[in] input          Pointer to input Tensor3D struct.
 * @param[in] region_start_x Start x index projected onto the input tensor.
 * @param[in] region_end_x   End x index projected onto the input tensor.
 * @param[in] region_start_y Start y index projected onto the input tensor.
 * @param[in] region_end_y   End y index projected onto the input tensor.
 * @param[in] pz             z index of the input tensor.
 *
 * @return An average pooled value from the region specified in the input tensor.
 */
inline DATA_TYPE roi_align_1x1(const Tensor3D *input, float region_start_x,
                               float bin_size_x,
                               float grid_size_x,
                               float region_end_x,
                               float region_start_y,
                               float bin_size_y,
                               float grid_size_y,
                               float region_end_y,
                               int   pz)
{
    // Iterate through the pooling region
    float sum = 0;
    for(int iy = 0; iy < grid_size_y; ++iy)
    {
        for(int ix = 0; ix < grid_size_x; ++ix)
        {
            // Align the window in the middle of every bin
            const float y = region_start_y + (iy + 0.5f) * bin_size_y / (float)grid_size_y;
            const float x = region_start_x + (ix + 0.5f) * bin_size_x / (float)grid_size_x;

            // Interpolation in the unit square
            const int y_low  = (int)y;
            const int x_low  = (int)x;
            const int y_high = y_low + 1;
            const int x_high = x_low + 1;

            const float ly = y - y_low;
            const float lx = x - x_low;
            const float hy = 1.f - ly;
            const float hx = 1.f - lx;

            const float w1 = hy * hx;
            const float w2 = hy * lx;
            const float w3 = ly * hx;
            const float w4 = ly * lx;
#if defined(NHWC)
            const DATA_TYPE data1 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_low, y_low);
            const DATA_TYPE data2 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_high, y_low);
            const DATA_TYPE data3 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_low, y_high);
            const DATA_TYPE data4 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_high, y_high);
#else  // !defined(NHWC)
            const DATA_TYPE data1                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_low, pz);
            const DATA_TYPE data2                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_low, pz);
            const DATA_TYPE data3                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_high, pz);
            const DATA_TYPE data4                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_high, pz);
#endif // defined(NHWC)

            const float data1_f32 = DEQUANTIZE(data1, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
            const float data2_f32 = DEQUANTIZE(data2, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
            const float data3_f32 = DEQUANTIZE(data3, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
            const float data4_f32 = DEQUANTIZE(data4, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
            sum += w1 * data1_f32 + w2 * data2_f32 + w3 * data3_f32 + w4 * data4_f32;
        }
    }

    const float res_f32 = sum / (grid_size_x * grid_size_y);
    return QUANTIZE(res_f32, OFFSET_OUT, SCALE_OUT, DATA_TYPE, 1);
}

/** Performs a roi align function.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=uchar
 * @note Datasize must be passed using -DDATA_SIZE e.g. -DDATA_SIZE=32;
 * @note Input dimensions must be passed using -DMAX_DIM_X, -DMAX_DIM_Y and -DMAX_DIM_Z;
 * @note Pooled region dimensions must be passed using -DPOOLED_DIM_X and -DPOOLED_DIM_Y;
 * @note Spatial scale must be passed using -DSPATIAL_SCALE;
 * @note Sampling ratio (i.e., the number of samples in each bin) may be passed using -DSAMPLING_RATIO. If not defined each roi
 *       will have a default sampling ratio of roi_dims/pooling_dims
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: QASYMM8
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the pooled region of the source tensor as specifed by ROI
 * @param[in]  rois_ptr                             Pointer to the ROIs tensor. Layout: { batch_index, x1, y1, x2, y2 }.
 *                                                  Supported data types: QASYMM16 with 0.125f scale and 0 offset
 * @param[in]  rois_stride_x                        Stride of the ROIs tensor in X dimension (in bytes)
 * @param[in]  rois_step_x                          Step of the ROIs tensor in X dimension (in bytes)
 * @param[in]  rois_stride_y                        Stride of the ROIs tensor in Y dimension (in bytes)
 * @param[in]  rois_step_y                          Step of the ROIs tensor in Y dimension (in bytes)
 * @param[in]  rois_offset_first_element_in_bytes   The offset of the first element in the ROIs tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 */
__kernel void roi_align_layer_quantized(
    TENSOR3D_DECLARATION(input),
    IMAGE_DECLARATION(rois),
    TENSOR3D_DECLARATION(output),
    unsigned int input_stride_w, unsigned int output_stride_w)
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
    Image    rois   = CONVERT_TO_IMAGE_STRUCT_NO_STEP(rois);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);

#if defined(NHWC)
    const int px = get_global_id(1);
    const int py = get_global_id(2);
    const int pw = get_global_id(0);
#else  // !defined(NHWC)
    const int                                  px = get_global_id(0);
    const int                                  py = get_global_id(1);
    const int                                  pw = get_global_id(2);
#endif // defined(NHWC)

    // Load roi parameters
    // roi is laid out as follows { batch_index, x1, y1, x2, y2 }
    const ushort roi_batch = *((__global ushort *)offset(&rois, 0, pw));
    float4 roi             = DEQUANTIZE(vload4(0, (__global ushort *)offset(&rois, 1, pw)), OFFSET_ROIS, SCALE_ROIS, ushort, 4);
    float2 roi_anchor      = roi.s01 * convert_float(SPATIAL_SCALE);
    float2 roi_dims        = fmax((roi.s23 - roi.s01) * convert_float(SPATIAL_SCALE), 1.f);

    // Calculate pooled region start and end
    float2 spatial_indx     = (float2)(px, py);
    float2 pooled_dims      = (float2)(POOLED_DIM_X, POOLED_DIM_Y);
    float2 max_spatial_dims = (float2)(MAX_DIM_X, MAX_DIM_Y);

    float2 bin_size     = (float2)((roi_dims.s0 / (float)POOLED_DIM_X), (roi_dims.s1 / (float)POOLED_DIM_Y));
    float2 region_start = spatial_indx * bin_size + roi_anchor;
    float2 region_end   = (spatial_indx + 1) * bin_size + roi_anchor;

    region_start = clamp(region_start, 0, max_spatial_dims);
    region_end   = clamp(region_end, 0, max_spatial_dims);

#if defined(SAMPLING_RATIO)
    float2 roi_bin_grid = SAMPLING_RATIO;
#else  // !defined(SAMPLING_RATIO)
    // Note that we subtract EPS_GRID before ceiling. This is to avoid situations where 1.000001 gets ceiled to 2.
    float2       roi_bin_grid           = ceil(bin_size - EPS_GRID);
#endif // defined(SAMPLING_RATIO)

    // Move input and output pointer across the fourth dimension
    input.ptr += roi_batch * input_stride_w;
    output.ptr += pw * output_stride_w;
    for(int pz = 0; pz < MAX_DIM_Z; ++pz)
    {
#if defined(NHWC)
        __global DATA_TYPE *_output_ptr = (__global DATA_TYPE *)tensor3D_offset(&output, pz, px, py);
#else  // !defined(NHWC)
        __global DATA_TYPE *_output_ptr = (__global DATA_TYPE *)tensor3D_offset(&output, px, py, pz);
#endif // defined(NHWC)
        *_output_ptr = (__global DATA_TYPE)roi_align_1x1(&input,
                                                         region_start.x,
                                                         bin_size.x,
                                                         roi_bin_grid.x,
                                                         region_end.x,
                                                         region_start.y,
                                                         bin_size.y,
                                                         roi_bin_grid.y,
                                                         region_end.y, pz);
    }
}
#endif // Check for compile time constants