aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/pooling_layer_quantized.cl
blob: d8cef2b4e6eabbab023cf9efca1aeb7f88fe3c61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
 * Copyright (c) 2017-2020 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#if defined(DATA_TYPE) && defined(INITIAL_VALUE)
#define VEC_TYPE(VEC_SIZE) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)

#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
#define VEC_FLOAT(VEC_SIZE) VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_INT(VEC_SIZE) VEC_DATA_TYPE(int, VEC_SIZE)
#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)
#define REQUANTIZE(VEC_SIZE, input, in_offset, out_offset, in_scale, out_scale, res)                                                                                  \
    {                                                                                                                                                                 \
        const VEC_FLOAT(VEC_SIZE) in_f32  = (CONVERT(input, VEC_FLOAT(VEC_SIZE)) - (VEC_FLOAT(VEC_SIZE))((float)in_offset)) * (VEC_FLOAT(VEC_SIZE))((float)in_scale); \
        const VEC_FLOAT(VEC_SIZE) out_f32 = in_f32 / ((VEC_FLOAT(VEC_SIZE))(float)out_scale) + ((VEC_FLOAT(VEC_SIZE))((float)out_offset));                            \
        res                               = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT(VEC_SIZE)), VEC_TYPE(VEC_SIZE));                                                \
    }
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

#if defined(POOL_AVG)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) */
#define POOL_OP(x, y) (max((x), (y)))
#endif /* defined(POOL_AVG) */

#define DIV_OP(x, y) (x * (1.f / y))

#if defined(POOL_L2)
#error "L2 pooling is not supported"
#endif /* defined(POOL_L2) */

int calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                        const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int       start_x = get_global_id(0) * stride_x - pad_x;
    int       start_y = get_global_id(1) * stride_y - pad_y;
    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
#if defined(EXCLUDE_PADDING)
    start_x = max(0, start_x);
    start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
    return ((end_y - start_y) * (end_x - start_x));
}

/** Performs a pooling function of pool size equal to N (NCHW)
 *
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 * @note Input data type must be passed at compile time using -DDAT_TYPE=type, e.g. -DDATA_TYPE=uchar
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source image. Supported data types: QASYMM8/QASYMM8_SIGNED
 * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source image
 * @param[out] output_ptr                           Pointer to the destination image. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination image in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination image in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image
 */
__kernel void pooling_layer_MxN_quantized_nchw(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    int8 vdata = INITIAL_VALUE;
    int  sdata = INITIAL_VALUE;

    // Load data
    for(int y = 0; y < POOL_SIZE_Y; y++)
    {
        int x = 0;
        for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
        {
            VEC_TYPE(8)
            data       = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
            int8 data0 = convert_int8(data);
            vdata      = POOL_OP(vdata, data0);
        }

        // Leftover
        for(; x < (int)POOL_SIZE_X; ++x)
        {
            DATA_TYPE data = *((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
            int data0      = convert_int(data);
            sdata          = POOL_OP(sdata, data0);
        }
    }

    // Reduce result
    int4 reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
    int2 reduce2 = POOL_OP(reduce4.s01, reduce4.s23);
    int  res     = POOL_OP(reduce2.s0, reduce2.s1);
    res          = POOL_OP(res, sdata);

#if defined(POOL_AVG)
    res = round(DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)));
#endif /* defined(POOL_AVG) */

    DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);

#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)

    const float result_f32   = convert_float(result_q8);
    const float input_offset = (float)OFFSET_IN1;
    const float input_scale  = (float)SCALE_IN1;
    const float scale_out    = (float)SCALE_OUT;
    const float offset_out   = (float)OFFSET_OUT;
    const float in_f32       = (result_f32 - input_offset) * input_scale;
    const float out_f32      = in_f32 / scale_out + offset_out;
    result_q8                = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);

#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

    *(__global DATA_TYPE *)output.ptr = result_q8;
}

#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=uchar. Supported data types are QASYMM8/QASYMM8_SIGNED
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=int
 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4
 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
 * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 * @note If the output has be requantized, -DOFFSET_IN1, -DOFFSET_OUT, -DSCALE_IN1 and -DSCALE_OUT muste be passed at compile time
 *
 * @param[in]  input_ptr                            Pointer to the source image. Supported data types: QASYMM8/QASYMM8_SIGNED
 * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                         input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source image
 * @param[out] output_ptr                           Pointer to the destination image. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                        output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image
 */
__kernel void pooling_layer_MxN_quantized_nhwc(
    TENSOR4D_DECLARATION(input),
    TENSOR4D_DECLARATION(output))
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
    int offset_c  = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0) * sizeof(DATA_TYPE);
    int idx_out_w = get_global_id(1);
#if DST_BATCH_SIZE != 1
    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    int idx_out_h = get_global_id(2) % DST_HEIGHT;
    int idx_out_n = get_global_id(2) / DST_HEIGHT;
#else  //DST_BATCH_SIZE != 1
    int idx_out_h   = get_global_id(2);
    int idx_out_n   = 0;
#endif // DST_BATCH_SIZE != 1

    int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + offset_c + idx_out_n * input_stride_w;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + offset_c + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n * output_stride_w;

    int pool_x_s = max((int)0, -idx_in_w);
    int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
    int pool_y_s = max((int)0, -idx_in_h);
    int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);

#if defined(POOL_AVG) && defined(EXCLUDE_PADDING)
    int filter_size = 0;
#elif defined(POOL_AVG) && !defined(EXCLUDE_PADDING) // defined(POOL_AVG) && defined(EXCLUDE_PADDING)
    int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
#endif                                               // defined(POOL_AVG) && !defined(EXCLUDE_PADDING)

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = INITIAL_VALUE;

    for(int y = pool_y_s; y < pool_y_e; ++y)
    {
        for(int x = pool_x_s; x < pool_x_e; ++x)
        {
            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
            data;
            VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
            data0;

            data  = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z));
            data0 = CONVERT(data, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));

            res0 = POOL_OP(res0, data0);

#if defined(POOL_AVG) && defined(EXCLUDE_PADDING)
            filter_size++;
#endif // defined(POOL_AVG) && defined(EXCLUDE_PADDING)
        }
    }

#if defined(POOL_AVG)
    res0 = (res0 + (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))(filter_size >> 1)) / filter_size;
#endif // defined(POOL_AVG)

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    out_q0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
    REQUANTIZE(VEC_SIZE, out_q0, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT, out_q0);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */

    // Store result
    STORE_VECTOR_SELECT(out_q, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0));
}
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
#endif // defined(DATA_TYPE) && defined(INITIAL_VALUE)