aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/pooling_layer.cl
blob: ba61674c7ba6551ae0c537917ca8fe57280a829b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "repeat.h"
#include "tile_helpers.h"

#if defined(POOL_AVG) || defined(POOL_L2)
#define POOL_OP(x, y) ((x) + (y))
#else /* defined(POOL_AVG) || defined(POOL_L2) */
#define POOL_OP(x, y) (fmax((x), (y)))
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
#define POW2_OP(x, vec_size) ((x) * (x))
#else /* defined(POOL_L2) */
#define POW2_OP(x, vec_size) (x)
#endif /* defined(POOL_L2) */

#define DIV_OP(x, y) (x * (1.f / y))
#define SQRT_OP(x) sqrt((x))

#if STRIDE_X == 1
#define POOLING3x3(res, input, output) POOLING3x3_STRIDE1(res, input, output)
#elif STRIDE_X == 2 /* STRIDE_X == 1 */
#define POOLING3x3(res, input, output) POOLING3x3_STRIDE2(res, input, output)
#elif STRIDE_X == 3 /* STRIDE_X not equals 1 or 2 */
#define POOLING3x3(res, input, output) POOLING3x3_STRIDE3(res, input, output)
#endif /* STRIDE_X == 3 */

#if defined(FP_MIXED_PRECISION)
#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \
    CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
#else /* defined(FP_MIXED_PRECISION) */
#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
#endif /* defined(FP_MIXED_PRECISION) */

#define POOLING3x3_STRIDE1(res, input, output)                                                                                                       \
    ({                                                                                                                                               \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                                   \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
        data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 4);                               \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                                   \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
        data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 4);                               \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                                   \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
        data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 4);                               \
        data00 = POW2_OP(data00, 4);                                                                                                                 \
        data01 = POW2_OP(data01, 2);                                                                                                                 \
        data10 = POW2_OP(data10, 4);                                                                                                                 \
        data11 = POW2_OP(data11, 2);                                                                                                                 \
        data20 = POW2_OP(data20, 4);                                                                                                                 \
        data21 = POW2_OP(data21, 2);                                                                                                                 \
        \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01212323);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data01.s0, data00.s3, data01.s01);                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01212323);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data11.s0, data10.s3, data11.s01);                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01212323);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data21.s0, data20.s3, data21.s01);                                                              \
        \
        values00 = POOL_OP(values00, values10);                                                                                                      \
        values01 = POOL_OP(values01, values11);                                                                                                      \
        values00 = POOL_OP(values00, values20);                                                                                                      \
        values01 = POOL_OP(values01, values21);                                                                                                      \
        \
        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03));                                                           \
    })

#define POOLING3x3_STRIDE2(res, input, output)                                                                                                       \
    ({                                                                                                                                               \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        data00               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                     \
        ACC_DATA_TYPE data01 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8));                                       \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        data10               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                     \
        ACC_DATA_TYPE data11 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8));                                       \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        data20               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                     \
        ACC_DATA_TYPE data21 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8));                                       \
        data00               = POW2_OP(data00, 8);                                                                                                   \
        data01               = POW2_OP(data01, 1);                                                                                                   \
        data10               = POW2_OP(data10, 8);                                                                                                   \
        data11               = POW2_OP(data11, 1);                                                                                                   \
        data20               = POW2_OP(data20, 8);                                                                                                   \
        data21               = POW2_OP(data21, 1);                                                                                                   \
        \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01223445);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s667, data01);                                                                           \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01223445);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data10.s667, data11);                                                                           \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
        values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01223445);                                                                              \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
        values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data20.s667, data21);                                                                           \
        \
        values00 = POOL_OP(values00, values10);                                                                                                      \
        values01 = POOL_OP(values01, values11);                                                                                                      \
        values00 = POOL_OP(values00, values20);                                                                                                      \
        values01 = POOL_OP(values01, values21);                                                                                                      \
        \
        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03));                                                           \
    })

#define POOLING3x3_STRIDE3(res, input, output)                                                                                               \
    ({                                                                                                                                       \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
        data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                           \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
        data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8);                       \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
        data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                           \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
        data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8);                       \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
        data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                           \
        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
        data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8);                       \
        data00 = POW2_OP(data00, 8);                                                                                                         \
        data01 = POW2_OP(data01, 4);                                                                                                         \
        data10 = POW2_OP(data10, 8);                                                                                                         \
        data11 = POW2_OP(data11, 4);                                                                                                         \
        data20 = POW2_OP(data20, 8);                                                                                                         \
        data21 = POW2_OP(data21, 4);                                                                                                         \
        \
        data00 = POOL_OP(data00, data10);                                                                                                    \
        data01 = POOL_OP(data01, data11);                                                                                                    \
        data00 = POOL_OP(data00, data20);                                                                                                    \
        data01 = POOL_OP(data01, data21);                                                                                                    \
        \
        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s036, data01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s147, data01.s2)); \
        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s25, data01.s03));                                                       \
    })

ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                                  const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int       start_x = get_global_id(0) * stride_x - pad_x;
    int       start_y = get_global_id(1) * stride_y - pad_y;
    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
#if defined(EXCLUDE_PADDING)
    start_x = max(0, start_x);
    start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
    return ((end_y - start_y) * (end_x - start_x));
}

/** Performs a pooling function of pool size equal to 2.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_2(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    // Load data
    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
    data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
    data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));

#if defined(POOL_L2)
    // Raise to power of 2 for L2 Pooling
    data0 = POW2_OP(data0, 2);
    data1 = POW2_OP(data1, 2);
#endif /* defined(POOL_L2) */

    // Perform calculations
    data0             = POOL_OP(data0, data1);
    ACC_DATA_TYPE res = POOL_OP(data0.s0, data0.s1);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average or l2 pooling
    res = DIV_OP(res, calculate_avg_scale(2, 2, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    // Store result
    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
}

/** Performs a pooling function of pool size equal to 3
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_3(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    // Load data
    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
    data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
    data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
    data2 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));

#if defined(POOL_L2)
    // Raise to power of 2 for L2 Pooling
    data0 = POW2_OP(data0, 3);
    data1 = POW2_OP(data1, 3);
    data2 = POW2_OP(data2, 3);
#endif /* defined(POOL_L2) */

    // Perform calculations
    data0             = POOL_OP(data0, data1);
    data0             = POOL_OP(data0, data2);
    ACC_DATA_TYPE res = POOL_OP(POOL_OP(data0.s0, data0.s1), data0.s2);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average pooling
    res = DIV_OP(res, calculate_avg_scale(3, 3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    // Store result
    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
}

#if defined(POOLING3x3)

#define CONVERT_OP(data_type) convert_##data_type##4
#define CONVERT_VECTOR4(data_type) CONVERT_OP(data_type)

VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
calculate_avg_scale4(const int pool_size, const int upper_bound_w, const int upper_bound_h,
                     const int pad_x, const int pad_y, const int stride_x, const int stride_y)
{
    int4       start_x = ((int4)get_global_id(0) * 4 + (int4)(0, 1, 2, 3)) * (int4)stride_x - (int4)pad_x;
    int        start_y = get_global_id(1) * stride_y - pad_y;
    const int4 end_x   = min(start_x + (int4)pool_size, (int4)upper_bound_w);
    const int  end_y   = min(start_y + pool_size, upper_bound_h);
#if defined(EXCLUDE_PADDING)
    start_x = max((int4)0, start_x);
    start_y = max(0, start_y);
#endif /* defined(EXCLUDE_PADDING) */
    return (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(1.f) / CONVERT_VECTOR4(ACC_DATA_TYPE)(((int4)(end_y - start_y)) * (end_x - start_x));
}

/** Performs an optimized pooling function of pool size equal to 3 when the stride_x is less equal than 3
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_optimized_3(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
    res;

    // Perform pooling 3x3 for 4 output elements
    POOLING3x3(res, input, output);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average pooling
    res *= calculate_avg_scale4(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    vstore4(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)output.ptr);
}
#endif // defined(POOLING3x3)

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

/** Performs a pooling function of pool size equal to N  (NCHW)
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note In case of average pooling the following information must be passed at compile time:
 *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
 *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
 *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_MxN_nchw(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output))
{
    // Get pixels pointer
    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
    vdata               = INITIAL_VALUE;
    ACC_DATA_TYPE sdata = INITIAL_VALUE;

    // Load data
    for(int y = 0; y < POOL_SIZE_Y; y++)
    {
        int x = 0;
        for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
        {
            VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
            data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif /* defined(POOL_L2) */
            vdata = POOL_OP(vdata, data0);
        }

        // Leftover
        for(; x < (int)POOL_SIZE_X; ++x)
        {
            ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0)));
#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif /* defined(POOL_L2) */
            sdata = POOL_OP(sdata, data0);
        }
    }

    // Reduce result
    VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
    reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
    reduce2           = POOL_OP(reduce4.s01, reduce4.s23);
    ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
    res               = POOL_OP(res, sdata);

#if defined(POOL_AVG) || defined(POOL_L2)
    // Divide by pool region in case of average pooling
    res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
#endif /* defined(POOL_AVG) || defined(POOL_L2) */

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res = SQRT_OP(res);
#endif /* defined(POOL_L2) */

    // Store result
    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

inline void offset_no_padding_nchw(const Tensor3D *input, uint *offset_top, uint *offset_bottom)
{
    const int pad_horiz = PAD_TENSOR_LEFT + PAD_TENSOR_RIGHT;
    const int pad_vert  = PAD_TENSOR_TOP + PAD_TENSOR_BOTTOM;

    const int x = get_global_id(0) * STRIDE_X;
    const int y = get_global_id(1) * STRIDE_Y;
    const int z = get_global_id(2);

    //x axis: width, y axis: height, z axis: component
    const uint padded_offset = input->offset_first_element_in_bytes
                               + x * input->stride_x
                               + y * input->stride_y
                               + z * input->stride_z;

    const uint offset_base = padded_offset
                             - y * pad_horiz * sizeof(DATA_TYPE)                                               /* Horizontal padding for each row */
                             - PAD_TENSOR_TOP * input->stride_y                                                /* top padding */
                             - z * MAX_HEIGHT * pad_horiz * sizeof(DATA_TYPE) - z * pad_vert * input->stride_y /* Z plane padding */
                             - PAD_TENSOR_LEFT * sizeof(DATA_TYPE);

#if defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT)
    *offset_top = (uint)((offset_base / sizeof(DATA_TYPE)) % (TENSOR_CHANNEL * TENSOR_WIDTH * TENSOR_HEIGHT));
#else  /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */
    *offset_top   = (uint)(offset_base / sizeof(DATA_TYPE));
#endif /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */

    *offset_bottom = *offset_top + input->stride_y / sizeof(DATA_TYPE) - pad_horiz;

    return;
}

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F32
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2_nchw_indices_fp32(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output),
    TENSOR3D_DECLARATION(indices))
{
    // Get pixels pointer
    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);

    // Load data
    float2 data0 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 0, 0));
    float2 data1 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));

    // Perform calculations
    float data0_max = POOL_OP(data0.s0, data0.s1);
    float data1_max = POOL_OP(data1.s0, data1.s1);
    float res       = POOL_OP(data0_max, data1_max);
    // Store result
    *(__global float *)output.ptr = res;

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

    uint offset_top    = 0;
    uint offset_bottom = 0;

    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);

    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));

    *(__global uint *)indices.ptr = index;

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
}

/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
 *
 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F16
 * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
 * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F16
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2_nchw_indices_fp16(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(output),
    TENSOR3D_DECLARATION(indices))
{
    // Get pixels pointer
    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);

    // Load data
    half2 data0 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 0, 0));
    half2 data1 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 1, 0));

    // Perform calculations
    half data0_max = POOL_OP(data0.s0, data0.s1);
    half data1_max = POOL_OP(data1.s0, data1.s1);
    half res       = POOL_OP(data0_max, data1_max);
    // Store result
    *(__global half *)output.ptr = res;

#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)

    uint offset_top    = 0;
    uint offset_bottom = 0;

    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);

    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));

    *(__global uint *)indices.ptr = index;

#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
}

#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)

#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
 * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
 * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4
 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
 * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F32/F16
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                         input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                        output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void pooling_layer_MxN_nhwc(
    TENSOR4D_DECLARATION(input),
    TENSOR4D_DECLARATION(output))
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
    int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
    int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
#if DST_BATCH_SIZE != 1
    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
    int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT;
#else  //DST_BATCH_SIZE != 1
    int idx_out_h = GET_SPATIAL_IDX(2, 1, 0);
    int idx_out_n = 0;
#endif // DST_BATCH_SIZE != 1

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
                                           output_stride_w;

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = INITIAL_VALUE;

#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
    // Global pooling path

    int filter_size = POOL_SIZE_X * POOL_SIZE_Y;

#pragma unroll 8
    for(int y = 0; y < POOL_SIZE_X * POOL_SIZE_Y; ++y)
    {
        VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
        data0;
#if defined(FP_MIXED_PRECISION)
        // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
        data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else  // defined(FP_MIXED_PRECISION)
        data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr));
#endif // defined(FP_MIXED_PRECISION)

#if defined(POOL_L2)
        // Raise to power of 2 for L2 Pooling
        data0 *= data0;
#endif // defined(POOL_L2)

        res0 = POOL_OP(res0, data0);

        in_base_ptr += input_stride_y;
    }
#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0

    int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;

    int pool_x_s    = max((int)0, -idx_in_w);
    int pool_x_e    = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
    int pool_y_s    = max((int)0, -idx_in_h);
    int pool_y_e    = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);

#if defined(EXCLUDE_PADDING)
    int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
#else  // defined(EXCLUDE_PADDING)
    int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
#endif // defined(EXCLUDE_PADDING)

    for(int y = pool_y_s; y < pool_y_e; ++y)
    {
        for(int x = pool_x_s; x < pool_x_e; ++x)
        {
            VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
            data0;
#if defined(FP_MIXED_PRECISION)
            // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
            data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else  // defined(FP_MIXED_PRECISION)
            data0   = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)

#if defined(POOL_L2)
            // Raise to power of 2 for L2 Pooling
            data0 *= data0;
#endif // defined(POOL_L2)
            res0 = POOL_OP(res0, data0);
        }
    }

#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0

#if defined(POOL_AVG) || defined(POOL_L2)
            res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#endif // defined(POOL_AVG) || defined(POOL_L2)

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)

    // Store result
#if defined(FP_MIXED_PRECISION)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
    STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else  // defined(FP_MIXED_PRECISION)
    STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)
}
#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)

#define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)

/** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types:
 * -# max, -DPOOL_MAX must be passed at compile time
 * -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time
 * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
 * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
 *
 * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
 * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
 * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
 * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
 * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
 * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
 * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
 * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
 * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
 * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
 *
 * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F32/F16
 * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_stride_w                        Stride of the source tensor in W dimension (in bytes)
 * @param[in]  input_step_w                          input_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
 * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                       Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_stride_w                       Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  output_step_w                         output_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
 * @param[in]  indices_ptr                           (Optional) Pointer to the indices tensor. Supported data types: U32
 * @param[in]  indices_stride_x                      (Optional) Stride of the indices tensor in X dimension (in bytes)
 * @param[in]  indices_step_x                        (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  indices_stride_y                      (Optional) Stride of the indices tensor in Y dimension (in bytes)
 * @param[in]  indices_step_y                        (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  indices_stride_z                      (Optional) Stride of the indices tensor in Z dimension (in bytes)
 * @param[in]  indices_step_z                        (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  indices_stride_w                      (Optional) Stride of the indices tensor in W dimension (in bytes)
 * @param[in]  indices_step_w                        (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor
 */
__kernel void pooling_layer_2x2_nhwc(
    TENSOR4D_DECLARATION(input),
    TENSOR4D_DECLARATION(output)
#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
    ,
    TENSOR4D_DECLARATION(indices)
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
)
{
    // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
    // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
    int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
    int idx_out_w = get_global_id(1);
#if DST_BATCH_SIZE != 1
    // If batch size != 1, the batch size dimension is collapsed over the height dimension
    int idx_out_h = get_global_id(2) % DST_HEIGHT;
    int idx_out_n = get_global_id(2) / DST_HEIGHT;
#else  //SRC_BATCH_SIZE != 1
    int idx_out_h = get_global_id(2);
    int idx_out_n = 0;
#endif // SRC_BATCH_SIZE != 1

    int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
    int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;

    __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;

    __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
                                           output_stride_w;

    int pool_x_s = max((int)0, -idx_in_w);
    int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w);
    int pool_y_s = max((int)0, -idx_in_h);
    int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h);

    int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);

    int x0 = pool_x_s + idx_in_w;
    int y0 = pool_y_s + idx_in_h;
    int x1 = pool_x_e - 1 + idx_in_w;
    int y1 = pool_y_e - 1 + idx_in_h;

    REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0);

#if defined(FP_MIXED_PRECISION)
    // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
    data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
    data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
#else  // defined(FP_MIXED_PRECISION)
    data0         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z));
    data1         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z));
    data2         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z));
    data3         = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z));
#endif // defined(FP_MIXED_PRECISION)

#if !defined(POOL_MAX)
    if(filter_size != 4)
    {
        SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
        SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1);
        SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
        SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1);

        // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
        data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s));
        data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s));
        data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e));
        data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e));
    }
#endif // !defined(POOL_MAX)

#if defined(POOL_L2)
    // Raise to power of 2 for L2 Pooling
    data0 *= data0;
    data1 *= data1;
    data2 *= data2;
    data3 *= data3;
#endif /* defined(POOL_L2) */

    VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
    res0 = data0;
    res0 = POOL_OP(res0, data1);
    res0 = POOL_OP(res0, data2);
    res0 = POOL_OP(res0, data3);

#if defined(POOL_AVG) || defined(POOL_L2)
#if defined(EXCLUDE_PADDING)
    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
#else  // !defined(EXCLUDE_PADDING)
    res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4;
#endif // defined(EXCLUDE_PADDING)
#endif // defined(POOL_AVG) || defined(POOL_L2)

#if defined(POOL_L2)
    // Take square root of the result in L2 pooling
    res0 = SQRT_OP(res0);
#endif // defined(POOL_L2)

    // Store result
#if defined(FP_MIXED_PRECISION)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
    STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#else  // defined(FP_MIXED_PRECISION)
    STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
#endif // defined(FP_MIXED_PRECISION)

#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)

    // This part is used to return the index of the maximum value
    // Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor

    // note: Batch dimension does not contribute in the offset contribution
    VEC_DATA_TYPE(uint, VEC_SIZE)
    base_index = (uint)idx_out_c;

    base_index += VEC_OFFS(uint, VEC_SIZE);

    VEC_DATA_TYPE(uint, VEC_SIZE)
    index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
    VEC_DATA_TYPE(uint, VEC_SIZE)
    index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);

    index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE)));
    index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE)));
    index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE)));

    __global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n *
                                           indices_stride_w;

    // Store result
    STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0));
#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
}
#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)