aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
blob: 9bbde1a57f7a5dd5e24c7df8c8d16cab22cff686 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
/*
 * Copyright (c) 2017-2018 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "types.h"

/*
 *The criteria for lost tracking is that the spatial gradient matrix has:
 * - Determinant less than DETERMINANT_THR
 * - or minimum eigenvalue is smaller then EIGENVALUE_THR
 *
 * The thresholds for the determinant and the minimum eigenvalue is
 * defined by the OpenVX spec
 *
 * Note: Also lost tracking happens when the point tracked coordinate is outside
 * the image coordinates
 *
 * https://www.khronos.org/registry/vx/specs/1.0/html/d0/d0c/group__group__vision__function__opticalflowpyrlk.html
 */

/* Internal Lucas-Kanade Keypoint struct */
typedef struct InternalKeypoint
{
    float x;               /**< The x coordinate. */
    float y;               /**< The y coordinate. */
    float tracking_status; /**< A zero indicates a lost point. Initialized to 1 by corner detectors. */
    float dummy;           /**< Dummy member for alignment. */
} InternalKeypoint;

/** Threshold for the determinant. Used for lost tracking criteria */
#define DETERMINANT_THR 1.0e-07f

/** Thresholds for minimum eigenvalue. Used for lost tracking criteria */
#define EIGENVALUE_THR 1.0e-04f

/** Constants used for Lucas-Kanade Algorithm */
#define W_BITS (14)
#define FLT_SCALE (1.0f / (float)(1 << 20))
#define D0 ((float)(1 << W_BITS))
#define D1 (1.0f / (float)(1 << (W_BITS - 5)))

/** Initializes the internal new points array when the level of pyramid is NOT equal to max.
 *
 * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
 * @param[in,out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
 * @param[in]     scale               Scale factor to apply for the new_point coordinates.
 */
__kernel void init_level(
    __global float4 *old_points_internal,
    __global float4 *new_points_internal,
    const float      scale)
{
    int idx = get_global_id(0);

    // Get old and new keypoints
    float4 old_point = old_points_internal[idx];
    float4 new_point = new_points_internal[idx];

    // Scale accordingly with the pyramid_scale
    old_point.xy *= (float2)(2.0f);
    new_point.xy *= (float2)(2.0f);

    old_points_internal[idx] = old_point;
    new_points_internal[idx] = new_point;
}

/** Initializes the internal new points array when the level of pyramid is equal to max.
 *
 * @param[in]     old_points          An array of key points that are defined at the old_images high resolution pyramid.
 * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
 * @param[out]    new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
 * @param[in]     scale               Scale factor to apply for the new_point coordinates.
 */
__kernel void init_level_max(
    __global Keypoint *old_points,
    __global InternalKeypoint *old_points_internal,
    __global InternalKeypoint *new_points_internal,
    const float                scale)
{
    int idx = get_global_id(0);

    Keypoint old_point = old_points[idx];

    // Get old keypoint to track
    InternalKeypoint old_point_internal;
    old_point_internal.x               = old_point.x * scale;
    old_point_internal.y               = old_point.y * scale;
    old_point_internal.tracking_status = 1.f;

    // Store internal keypoints
    old_points_internal[idx] = old_point_internal;
    new_points_internal[idx] = old_point_internal;
}

/** Initializes the new_points array when the level of pyramid is equal to max and if use_initial_estimate = 1.
 *
 * @param[in]     old_points           An array of key points that are defined at the old_images high resolution pyramid.
 * @param[in]     new_points_estimates An array of estimate key points that are defined at the old_images high resolution pyramid.
 * @param[in,out] old_points_internal  An array of internal key points that are defined at the old_images high resolution pyramid.
 * @param[out]    new_points_internal  An array of internal key points that are defined at the new_images high resolution pyramid.
 * @param[in]     scale                Scale factor to apply for the new_point coordinates.
 */
__kernel void init_level_max_initial_estimate(
    __global Keypoint *old_points,
    __global Keypoint *new_points_estimates,
    __global InternalKeypoint *old_points_internal,
    __global InternalKeypoint *new_points_internal,
    const float                scale)
{
    int idx = get_global_id(0);

    Keypoint         old_point          = old_points[idx];
    Keypoint         new_point_estimate = new_points_estimates[idx];
    InternalKeypoint old_point_internal;
    InternalKeypoint new_point_internal;

    // Get old keypoint to track
    old_point_internal.x               = old_point.x * scale;
    old_point_internal.y               = old_point.y * scale;
    old_point_internal.tracking_status = 1.f;

    // Get new keypoint to track
    new_point_internal.x               = new_point_estimate.x * scale;
    new_point_internal.y               = new_point_estimate.y * scale;
    new_point_internal.tracking_status = new_point_estimate.tracking_status;

    // Store internal keypoints
    old_points_internal[idx] = old_point_internal;
    new_points_internal[idx] = new_point_internal;
}

/** Truncates the coordinates stored in new_points array
 *
 * @param[in]  new_points_internal An array of estimate key points that are defined at the new_images high resolution pyramid.
 * @param[out] new_points          An array of internal key points that are defined at the new_images high resolution pyramid.
 */
__kernel void finalize(
    __global InternalKeypoint *new_points_internal,
    __global Keypoint *new_points)
{
    int idx = get_global_id(0);

    // Load internal keypoint
    InternalKeypoint new_point_internal = new_points_internal[idx];

    // Calculate output point
    Keypoint new_point;
    new_point.x               = round(new_point_internal.x);
    new_point.y               = round(new_point_internal.y);
    new_point.strength        = 0.f;
    new_point.scale           = 0.f;
    new_point.orientation     = 0.f;
    new_point.tracking_status = new_point_internal.tracking_status;
    new_point.error           = 0.f;

    // Store new point
    new_points[idx] = new_point;
}

/** Computes A11, A12, A22, min_eig, ival, ixval and iyval at level 0th of the pyramid. These values will be used in step 1.
 *
 * @param[in]      old_image_ptr                               Pointer to the input old image. Supported data types: U8
 * @param[in]      old_image_stride_x                          Stride of the input old image in X dimension (in bytes)
 * @param[in]      old_image_step_x                            old_image_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]      old_image_stride_y                          Stride of the input old image in Y dimension (in bytes)
 * @param[in]      old_image_step_y                            old_image_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]      old_image_offset_first_element_in_bytes     The offset of the first element in the input old image
 * @param[in]      old_scharr_gx_ptr                           Pointer to the input scharr x image. Supported data types: S16
 * @param[in]      old_scharr_gx_stride_x                      Stride of the input scharr x image in X dimension (in bytes)
 * @param[in]      old_scharr_gx_step_x                        old_scharr_gx_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]      old_scharr_gx_stride_y                      Stride of the input scharr x image in Y dimension (in bytes)
 * @param[in]      old_scharr_gx_step_y                        old_scharr_gx_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]      old_scharr_gx_offset_first_element_in_bytes The offset of the first element in the input scharr x image
 * @param[in]      old_scharr_gy_ptr                           Pointer to the input scharr y image. Supported data types: S16
 * @param[in]      old_scharr_gy_stride_x                      Stride of the input scharr y image in X dimension (in bytes)
 * @param[in]      old_scharr_gy_step_x                        old_scharr_gy_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]      old_scharr_gy_stride_y                      Stride of the input scharr y image in Y dimension (in bytes)
 * @param[in]      old_scharr_gy_step_y                        old_scharr_gy_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]      old_scharr_gy_offset_first_element_in_bytes The offset of the first element in the input scharr y image
 * @param[in]      old_points                                  An array of key points. Those key points are defined at the old_images high resolution pyramid
 * @param[in, out] new_points                                  An output array of key points. Those key points are defined at the new_images high resolution pyramid
 * @param[out]     coeff                                       It stores | A11 | A12 | A22 | min_eig | for each keypoint
 * @param[out]     iold_val                                    It stores | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
 * @param[in]      window_dimension                            The size of the window on which to perform the algorithm
 * @param[in]      window_dimension_pow2                       The squared size of the window on which to perform the algorithm
 * @param[in]      half_window                                 The half size of the window on which to perform the algorithm
 * @param[in]      border_limits                               It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
 * @param[in]      eig_const                                   1.0f / (float)(2.0f * window_dimension * window_dimension)
 * @param[in]      level0                                      It is set to 1 if level 0 of the pyramid
 */
void __kernel lktracker_stage0(
    IMAGE_DECLARATION(old_image),
    IMAGE_DECLARATION(old_scharr_gx),
    IMAGE_DECLARATION(old_scharr_gy),
    __global float4 *old_points,
    __global float4 *new_points,
    __global float4 *coeff,
    __global short4 *iold_val,
    const int        window_dimension,
    const int        window_dimension_pow2,
    const int        half_window,
    const float3     border_limits,
    const float      eig_const,
    const int        level0)
{
    int idx = get_global_id(0);

    Image old_image     = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_image);
    Image old_scharr_gx = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gx);
    Image old_scharr_gy = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gy);

    // Get old keypoint
    float2 old_keypoint = old_points[idx].xy - (float2)half_window;

    // Get the floor value
    float2 iold_keypoint = floor(old_keypoint);

    // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
    if(any(iold_keypoint < border_limits.zz) || any(iold_keypoint >= border_limits.xy))
    {
        if(level0 == 1)
        {
            // Invalidate tracked point as we are at level 0
            new_points[idx].s2 = 0.0f;
        }

        // Not valid coordinate. It sets min_eig to 0.0f
        coeff[idx].s3 = 0.0f;

        return;
    }

    // Compute weight for the bilinear interpolation
    float2 ab = old_keypoint - iold_keypoint;

    // Weight used for Bilinear-Interpolation on Scharr images
    // w_scharr.s0 = (1.0f - ab.x) * (1.0f - ab.y)
    // w_scharr.s1 = ab.x * (1.0f - ab.y)
    // w_scharr.s2 = (1.0f - ab.x) * ab.y
    // w_scharr.s3 = ab.x * ab.y

    float4 w_scharr;
    w_scharr.s3  = ab.x * ab.y;
    w_scharr.s0  = w_scharr.s3 + 1.0f - ab.x - ab.y;
    w_scharr.s12 = ab - (float2)w_scharr.s3;

    // Weight used for Bilinear-Interpolation on Old and New images
    // w.s0 = round(w_scharr.s0 * D0)
    // w.s1 = round(w_scharr.s1 * D0)
    // w.s2 = round(w_scharr.s2 * D0)
    // w.s3 = w.s3 = D0 - w.s0 - w.s1 - w.s2

    float4 w;
    w    = round(w_scharr * (float4)D0);
    w.s3 = D0 - w.s0 - w.s1 - w.s2; // Added for matching VX implementation

    // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
    int4 iG = (int4)0;

    // Window offset
    int window_offset = idx * window_dimension_pow2;

    // Compute Spatial Gradient Matrix G
    for(ushort ky = 0; ky < window_dimension; ++ky)
    {
        int offset_y = iold_keypoint.y + ky;
        for(ushort kx = 0; kx < window_dimension; ++kx)
        {
            int    offset_x = iold_keypoint.x + kx;
            float4 px;

            // Load values from old_image for computing the bilinear interpolation
            px = convert_float4((uchar4)(vload2(0, offset(&old_image, offset_x, offset_y)),
                                         vload2(0, offset(&old_image, offset_x, offset_y + 1))));

            // old_i.s0 = ival, old_i.s1 = ixval, old_i.s2 = iyval, old_i.s3 = dummy
            float4 old_i;

            // Compute bilinear interpolation (with D1 scale factor) for ival
            old_i.s0 = dot(px, w) * D1;

            // Load values from old_scharr_gx for computing the bilinear interpolation
            px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y)),
                                         vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y + 1))));

            // Compute bilinear interpolation for ixval
            old_i.s1 = dot(px, w_scharr);

            // Load values from old_scharr_gy for computing the bilinear interpolation
            px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y)),
                                         vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y + 1))));

            // Compute bilinear interpolation for iyval
            old_i.s2 = dot(px, w_scharr);

            // Rounding (it could be omitted. Used just for matching the VX implementation)
            int4 iold = convert_int4(round(old_i));

            // Accumulate values in the Spatial Gradient Matrix
            iG.s0 += (int)(iold.s1 * iold.s1);
            iG.s1 += (int)(iold.s1 * iold.s2);
            iG.s2 += (int)(iold.s2 * iold.s2);

            // Store ival, ixval and iyval
            iold_val[window_offset + kx] = convert_short4(iold);
        }
        window_offset += window_dimension;
    }

    // Scale iA11, iA12 and iA22
    float4 G = convert_float4(iG) * (float4)FLT_SCALE;

    // Compute minimum eigen value
    G.s3 = (float)(G.s2 + G.s0 - sqrt(pown(G.s0 - G.s2, 2) + 4.0f * G.s1 * G.s1)) * eig_const;

    // Store A11. A11, A22 and min_eig
    coeff[idx] = G;
}

/** Computes the motion vector for a given keypoint
 *
 * @param[in]      new_image_ptr                           Pointer to the input new image. Supported data types: U8
 * @param[in]      new_image_stride_x                      Stride of the input new image in X dimension (in bytes)
 * @param[in]      new_image_step_x                        new_image_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]      new_image_stride_y                      Stride of the input new image in Y dimension (in bytes)
 * @param[in]      new_image_step_y                        new_image_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]      new_image_offset_first_element_in_bytes The offset of the first element in the input new image
 * @param[in, out] new_points                              An output array of key points. Those key points are defined at the new_images high resolution pyramid
 * @param[in]      coeff                                   The | A11 | A12 | A22 | min_eig | for each keypoint
 * @param[in]      iold_val                                The | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
 * @param[in]      window_dimension                        The size of the window on which to perform the algorithm
 * @param[in]      window_dimension_pow2                   The squared size of the window on which to perform the algorithm
 * @param[in]      half_window                             The half size of the window on which to perform the algorithm
 * @param[in]      num_iterations                          The maximum number of iterations
 * @param[in]      epsilon                                 The value for terminating the algorithm.
 * @param[in]      border_limits                           It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
 * @param[in]      eig_const                               1.0f / (float)(2.0f * window_dimension * window_dimension)
 * @param[in]      level0                                  It is set to 1 if level of pyramid = 0
 * @param[in]      term_epsilon                            It is set to 1 if termination = TERM_CRITERIA_EPSILON
 */
void __kernel lktracker_stage1(
    IMAGE_DECLARATION(new_image),
    __global float4 *new_points,
    __global float4 *coeff,
    __global short4 *iold_val,
    const int        window_dimension,
    const int        window_dimension_pow2,
    const int        half_window,
    const int        num_iterations,
    const float      epsilon,
    const float3     border_limits,
    const float      eig_const,
    const int        level0,
    const int        term_epsilon)
{
    int   idx       = get_global_id(0);
    Image new_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(new_image);

    // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
    float4 G = coeff[idx];

    // Determinant
    float D = G.s0 * G.s2 - G.s1 * G.s1;

    // Check if it is a good point to track
    if(G.s3 < EIGENVALUE_THR || D < DETERMINANT_THR)
    {
        if(level0 == 1)
        {
            // Invalidate tracked point as we are at level 0
            new_points[idx].s2 = 0;
        }

        return;
    }

    // Compute inverse
    //D = native_recip(D);
    D = 1.0 / D;

    // Get new keypoint
    float2 new_keypoint = new_points[idx].xy - (float)half_window;

    // Get new point
    float2 out_new_point = new_points[idx].xy;

    // Keep delta obtained in the previous iteration
    float2 prev_delta = (float2)0.0f;

    int j = 0;
    while(j < num_iterations)
    {
        // Get the floor value
        float2 inew_keypoint = floor(new_keypoint);

        // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
        if(any(inew_keypoint < border_limits.zz) || any(inew_keypoint >= border_limits.xy))
        {
            if(level0 == 1)
            {
                // Invalidate tracked point as we are at level 0
                new_points[idx].s2 = 0.0f;
            }
            else
            {
                new_points[idx].xy = out_new_point;
            }

            return;
        }

        // Compute weight for the bilinear interpolation
        float2 ab = new_keypoint - inew_keypoint;

        // Weight used for Bilinear-Interpolation on Old and New images
        // w.s0 = round((1.0f - ab.x) * (1.0f - ab.y) * D0)
        // w.s1 = round(ab.x * (1.0f - ab.y) * D0)
        // w.s2 = round((1.0f - ab.x) * ab.y * D0)
        // w.s3 = D0 - w.s0 - w.s1 - w.s2

        float4 w;
        w.s3  = ab.x * ab.y;
        w.s0  = w.s3 + 1.0f - ab.x - ab.y;
        w.s12 = ab - (float2)w.s3;
        w     = round(w * (float4)D0);
        w.s3  = D0 - w.s0 - w.s1 - w.s2;

        // Mismatch vector
        int2 ib = 0;

        // Old val offset
        int old_val_offset = idx * window_dimension_pow2;

        for(int ky = 0; ky < window_dimension; ++ky)
        {
            for(int kx = 0; kx < window_dimension; ++kx)
            {
                // ival, ixval and iyval have been computed in the previous stage
                int4 old_ival = convert_int4(iold_val[old_val_offset]);

                // Load values from old_image for computing the bilinear interpolation
                float4 px = convert_float4((uchar4)(vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky)),
                                                    vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky + 1))));

                // Compute bilinear interpolation on new image
                int jval = (int)round(dot(px, w) * D1);

                // Compute luminance difference
                int diff = (int)(jval - old_ival.s0);

                // Accumulate values in mismatch vector
                ib += (diff * old_ival.s12);

                // Update old val offset
                old_val_offset++;
            }
        }

        float2 b = convert_float2(ib) * (float2)FLT_SCALE;

        // Optical Flow
        float2 delta;

        delta.x = (float)((G.s1 * b.y - G.s2 * b.x) * D);
        delta.y = (float)((G.s1 * b.x - G.s0 * b.y) * D);

        // Update new point coordinate
        new_keypoint += delta;

        out_new_point = new_keypoint + (float2)half_window;

        if(term_epsilon == 1)
        {
            float mag2 = dot(delta, delta);

            if(mag2 <= epsilon)
            {
                new_points[idx].xy = out_new_point;

                return;
            }
        }

        // Check convergence analyzing the previous delta
        if(j > 0 && all(fabs(delta + prev_delta) < (float2)0.01f))
        {
            out_new_point -= delta * (float2)0.5f;

            new_points[idx].xy = out_new_point;

            return;
        }

        // Update previous delta
        prev_delta = delta;

        j++;
    }

    new_points[idx].xy = out_new_point;
}