aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/normalization_layer.cl
blob: 390f8fcbebae19388ec3d63faf14e713eba80108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#define MUL_OP(x, y) ((x) * (y))
#define ADD_OP(x, y) ((x) + (y))
#define DIV_OP(x, y) ((x) / (y))
#define POW_OP(x, y) pow((x), (y))
#define SQCVT_SAT(a) (a)

#define LOAD_OP(offset, ptr) vload4(offset, ptr)
#define STORE_OP(data, offset, ptr) vstore4(data, offset, ptr)

#if defined(NUM_SLICES)
/** Apply cross-map normalization.
 *
 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16
 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5
 * @note The number of slices should be given as a preprocessor argument using -DNUM_SLICES=size. e.g. -DNUM_SLICES=192
 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA
 *
 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void normalization_layer_cross_map(TENSOR3D_DECLARATION(input),
                                            TENSOR3D_DECLARATION(output))
{
    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    acc = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0;
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    coeff_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(COEFF);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    beta_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(BETA);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    kappa_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(KAPPA);

    const int current_slice = get_global_id(2);
    const int left_slice    = max(-(int)RADIUS, -current_slice);
    const int right_slice   = min((int)RADIUS, (int)NUM_SLICES - 1 - current_slice);

    for(int i = left_slice; i <= right_slice; i++)
    {
        VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
        values = LOAD_OP(0, (__global DATA_TYPE *)tensor3D_offset(&in, 0, 0, i));
        acc    = ADD_OP(acc, MUL_OP(values, values));
    }

    acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized = POW_OP(acc, beta_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized_pixel = DIV_OP(LOAD_OP(0, (__global DATA_TYPE *)in.ptr), normalized);

    STORE_OP(normalized_pixel, 0, (__global DATA_TYPE *)out.ptr);
}
#endif /* defined(NUM_SLICES) */

#if defined(WIDTH_SIZE)
/** Apply in-map normalization when tensors are in the NCHW data layout format.
 *
 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16
 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5
 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA
 *
 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the first destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void normalization_layer_in_map_nchw(TENSOR3D_DECLARATION(input),
                                              TENSOR3D_DECLARATION(output))
{
    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    acc = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0;
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    coeff_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(COEFF);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    beta_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(BETA);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    kappa_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(KAPPA);

    const int current_col = get_global_id(0) << 2;
    const int left_pos    = max(-(int)RADIUS, -3 - current_col);
    const int right_pos   = min((int)RADIUS, (int)WIDTH_SIZE - 1 - current_col);

#if defined(IN_MAP_2D)
    const int current_row = get_global_id(1);
    const int first_row   = max(-(int)RADIUS, -current_row);
    const int last_row    = min((int)RADIUS, (int)get_global_size(1) - 1 - current_row);
#endif /* defined(IN_MAP_2D) */

#if defined(IN_MAP_2D)
    for(int j = first_row; j <= last_row; ++j)
    {
#endif /* defined(IN_MAP_2D) */
        for(int i = left_pos; i <= right_pos; ++i)
        {
#if defined(IN_MAP_2D)
            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
            values = LOAD_OP(0, (__global DATA_TYPE *)tensor3D_offset(&in, i, j, 0));
#else  /* defined(IN_MAP_2D) */
            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
            values = LOAD_OP(0, (__global DATA_TYPE *)tensor3D_offset(&in, i, 0, 0));
#endif /* defined(IN_MAP_2D) */
            acc = ADD_OP(acc, MUL_OP(values, values));
        }
#if defined(IN_MAP_2D)
    }
#endif /* defined(IN_MAP_2D) */

    acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized = POW_OP(acc, beta_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized_pixel = DIV_OP(LOAD_OP(0, (__global DATA_TYPE *)in.ptr), normalized);

    STORE_OP(normalized_pixel, 0, (__global DATA_TYPE *)out.ptr);
}
#endif // defined(WIDTH_SIZE)

#if defined(NUM_SLICES)
/** Apply in-map normalization when tensors are in the NHWC data layout format.
 *
 * @note Datatype should be given as a preprocessor argument using -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE=size, e.g. -DVEC_SIZE=16
 * @note The radius should be given as a preprocessor argument using -DRADIUS=size. e.g. -DRADIUS=5
 * @note The number of slices should be given as a preprocessor argument using -DNUM_SLICES=size. e.g. -DNUM_SLICES=192
 * @note Scaling coefficient (= alpha/norm_size), beta and kappa need to be passed at compile time using -DCOEFF, -DALPHA and -DKAPPA
 *
 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the first destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 */
__kernel void normalization_layer_in_map_nhwc(TENSOR3D_DECLARATION(input),
                                              TENSOR3D_DECLARATION(output))
{
    Tensor3D in  = CONVERT_TO_TENSOR3D_STRUCT(input);
    Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    acc = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))0;
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    coeff_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(COEFF);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    beta_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(BETA);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    kappa_v = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(KAPPA);

    const int current_cols = get_global_id(1);
    const int first_col    = max(-(int)RADIUS, -current_cols);
    const int last_col     = min((int)RADIUS, (int)get_global_size(1) - 1 - current_cols);

#if defined(IN_MAP_2D)
    const int current_rows = get_global_id(2);
    const int first_row    = max(-(int)RADIUS, -current_rows);
    const int last_row     = min((int)RADIUS, (int)NUM_SLICES - 1 - current_rows);
#endif /* defined(IN_MAP_2D) */

#if defined(IN_MAP_2D)
    for(int j = first_row; j <= last_row; ++j)
    {
#endif /* defined(IN_MAP_2D) */
        for(int i = first_col; i <= last_col; ++i)
        {
#if defined(IN_MAP_2D)
            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
            values = LOAD_OP(0, (__global DATA_TYPE *)tensor3D_offset(&in, 0, i, j));
#else  /* defined(IN_MAP_2D) */
            VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
            values = LOAD_OP(0, (__global DATA_TYPE *)tensor3D_offset(&in, 0, i, 0));
#endif /* defined(IN_MAP_2D) */
            acc = ADD_OP(acc, MUL_OP(values, values));
        }
#if defined(IN_MAP_2D)
    }
#endif /* defined(IN_MAP_2D) */

    acc = ADD_OP(MUL_OP(acc, coeff_v), kappa_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized = POW_OP(acc, beta_v);
    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    normalized_pixel = DIV_OP(LOAD_OP(0, (__global DATA_TYPE *)in.ptr), normalized);

    STORE_OP(normalized_pixel, 0, (__global DATA_TYPE *)out.ptr);
}
#endif /* defined(NUM_SLICES) */